IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v23y2011i3p763-780.html
   My bibliography  Save this article

A rank-based empirical likelihood approach to two-sample proportional odds model and its goodness of fit

Author

Listed:
  • Zhong Guan
  • Cheng Peng

Abstract

A rank-based empirical likelihood method is proposed and applied to estimate the proportionality parameter and the underlying distributions in a two-sample semiparametric proportional odds model. A distribution-free goodness-of-fit test for the model is also given. It is proved that the maximum likelihood estimator of the proportionality parameter is reciprocal symmetric. As one of the applications, we use the proposed procedure to estimate receiver operating characteristic (ROC) curves. We also perform a simulation study to assess the performance of the proposed procedure and provide a numerical example based on real-world data to illustrate the implementation of the method.

Suggested Citation

  • Zhong Guan & Cheng Peng, 2011. "A rank-based empirical likelihood approach to two-sample proportional odds model and its goodness of fit," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(3), pages 763-780.
  • Handle: RePEc:taf:gnstxx:v:23:y:2011:i:3:p:763-780
    DOI: 10.1080/10485252.2011.559726
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2011.559726
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2011.559726?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. N. Pettitt, 1984. "Proportional Odds Models for Survival Data and Estimates Using Ranks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 33(2), pages 169-175, June.
    2. Jing Qin, 2003. "Using logistic regression procedures for estimating receiver operating characteristic curves," Biometrika, Biometrika Trust, vol. 90(3), pages 585-596, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramesh Gupta & Cheng Peng, 2014. "Proportional odds frailty model and stochastic comparisons," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(5), pages 897-912, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qihua & Tong, Xingwei & Sun, Liuquan, 2012. "Exploring the varying covariate effects in proportional odds models with censored data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 168-189.
    2. Jianbo Li & Minggao Gu & Tao Hu, 2012. "General partially linear varying-coefficient transformation models for ranking data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(7), pages 1475-1488, January.
    3. Cheam, Amay S.M. & McNicholas, Paul D., 2016. "Modelling receiver operating characteristic curves using Gaussian mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 192-208.
    4. B Rey deCastro, 2019. "Cumulative ROC curves for discriminating three or more ordinal outcomes with cutpoints on a shared continuous measurement scale," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-16, August.
    5. Clelia Di Serio & Yosef Rinott & Marco Scarsini, 2009. "Simpson's Paradox in Survival Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 463-480, September.
    6. Ying Qing Chen & Nan Hu & Su-Chun Cheng & Philippa Musoke & Lue Ping Zhao, 2012. "Estimating Regression Parameters in an Extended Proportional Odds Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 318-330, March.
    7. Alicja Jokiel-Rokita & RafaƂ Topolnicki, 2019. "Minimum distance estimation of the binormal ROC curve," Statistical Papers, Springer, vol. 60(6), pages 2161-2183, December.
    8. Xifen Huang & Chaosong Xiong & Tao Jiang & Junfeng Lu & Jinfeng Xu, 2022. "Efficient Estimation and Inference in the Proportional Odds Model for Survival Data," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    9. Wang, Suohong & Zhang, Biao, 2014. "Semiparametric empirical likelihood confidence intervals for AUC under a density ratio model," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 101-115.
    10. Zhang, Hao Helen & Lu, Wenbin & Wang, Hansheng, 2010. "On sparse estimation for semiparametric linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1594-1606, August.
    11. Daniel Rabinowitz & Rebecca A. Betensky & Anastasios A. Tsiatis, 2000. "Using Conditional Logistic Regression to Fit Proportional Odds Models to Interval Censored Data," Biometrics, The International Biometric Society, vol. 56(2), pages 511-518, June.
    12. Wan, Shuwen & Zhang, Biao, 2008. "Comparing correlated ROC curves for continuous diagnostic tests under density ratio models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 233-245, September.
    13. Zhao, Yichuan, 2010. "Semiparametric inference for transformation models via empirical likelihood," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1846-1858, September.
    14. Kin Yau Wong & Yair Goldberg & Jason P. Fine, 2016. "Oracle estimation of parametric models under boundary constraints," Biometrics, The International Biometric Society, vol. 72(4), pages 1173-1183, December.
    15. Matteo Grigoletto & Michael G. Akritas, 1999. "Analysis of Covariance with Incomplete Data Via Semiparametric Model Transformations," Biometrics, The International Biometric Society, vol. 55(4), pages 1177-1187, December.
    16. Glenn Heller & Jing Qin, 2001. "Pairwise Rank-Based Likelihood for Estimation and Inference on the Mixture Proportion," Biometrics, The International Biometric Society, vol. 57(3), pages 813-817, September.
    17. Pao-sheng Shen & Yi Liu, 2019. "Pseudo maximum likelihood estimation for the Cox model with doubly truncated data," Statistical Papers, Springer, vol. 60(4), pages 1207-1224, August.
    18. Tan, Xin Lu, 2019. "Optimal estimation of slope vector in high-dimensional linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 179-204.
    19. Huang, Bin & Wang, Qihua, 2010. "Semiparametric analysis based on weighted estimating equations for transformation models with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2078-2090, October.
    20. William M. Briggs & Russell Zaretzki, 2008. "The Skill Plot: A Graphical Technique for Evaluating Continuous Diagnostic Tests," Biometrics, The International Biometric Society, vol. 64(1), pages 250-256, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:23:y:2011:i:3:p:763-780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.