IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v123y2014icp1-18.html
   My bibliography  Save this article

Partial marginal likelihood estimation for general transformation models

Author

Listed:
  • Gu, Minggao
  • Wu, Yueqin
  • Huang, Bin

Abstract

We consider a large class of transformation models introduced by Gu et al. (2005) [14]. They proposed an estimation procedure for calculating the maximum partial marginal likelihood estimator (MPMLE) of regression parameters. A big advantage of MPMLE is that it avoids estimating two infinitely dimensional nuisance parameters: baseline and censoring survival functions. And they showed the validity of MPMLE through extensive simulations. In this paper, we establish the asymptotic properties of MPMLE in the general transformation models for either right or left censored data. The difficulty in establishing these asymptotic results comes from the fact that the score function derived from the partial marginal likelihood does not have ordinary independence or martingale structure. We develop a novel discretization method to resolve the difficulty. The estimation procedure is further examined using simulation studies and the analysis of the ACTG019 data.

Suggested Citation

  • Gu, Minggao & Wu, Yueqin & Huang, Bin, 2014. "Partial marginal likelihood estimation for general transformation models," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 1-18.
  • Handle: RePEc:eee:jmvana:v:123:y:2014:i:c:p:1-18
    DOI: 10.1016/j.jmva.2013.08.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X13001772
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2013.08.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenbin Lu & Anastasios A. Tsiatis, 2006. "Semiparametric transformation models for the case-cohort study," Biometrika, Biometrika Trust, vol. 93(1), pages 207-214, March.
    2. Fushing Hsieh, 2001. "On heteroscedastic hazards regression models: theory and application," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(1), pages 63-79.
    3. Wenbin Lu, 2004. "On semiparametric transformation cure models," Biometrika, Biometrika Trust, vol. 91(2), pages 331-343, June.
    4. Donglin Zeng & D. Y. Lin, 2006. "Efficient estimation of semiparametric transformation models for counting processes," Biometrika, Biometrika Trust, vol. 93(3), pages 627-640, September.
    5. Kelly Zou & W. J. Hall, 2000. "Two transformation models for estimating an ROC curve derived from continuous data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(5), pages 621-631.
    6. Ming Gao Gu & Hong‐Tu Zhu, 2001. "Maximum likelihood estimation for spatial models by Markov chain Monte Carlo stochastic approximation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 339-355.
    7. Guozhi Gao & Anastasios A. Tsiatis, 2005. "Semiparametric estimators for the regression coefficients in the linear transformation competing risks model with missing cause of failure," Biometrika, Biometrika Trust, vol. 92(4), pages 875-891, December.
    8. Kani Chen, 2002. "Semiparametric analysis of transformation models with censored data," Biometrika, Biometrika Trust, vol. 89(3), pages 659-668, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colin Wu & Xin Tian & Jarvis Yu, 2010. "Nonparametric estimation for time-varying transformation models with longitudinal data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 133-147.
    2. Lu Mao & D. Y. Lin, 2017. "Efficient estimation of semiparametric transformation models for the cumulative incidence of competing risks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 573-587, March.
    3. Sangbum Choi & Xuelin Huang, 2012. "A General Class of Semiparametric Transformation Frailty Models for Nonproportional Hazards Survival Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1126-1135, December.
    4. Chyong-Mei Chen & Pao-sheng Shen & Yi Liu, 2021. "On semiparametric transformation model with LTRC data: pseudo likelihood approach," Statistical Papers, Springer, vol. 62(1), pages 3-30, February.
    5. Wang, Qihua & Tong, Xingwei & Sun, Liuquan, 2012. "Exploring the varying covariate effects in proportional odds models with censored data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 168-189.
    6. Lu Mao & Dan-Yu Lin & Donglin Zeng, 2017. "Semiparametric regression analysis of interval-censored competing risks data," Biometrics, The International Biometric Society, vol. 73(3), pages 857-865, September.
    7. Li, Shuwei & Hu, Tao & Zhao, Xingqiu & Sun, Jianguo, 2019. "A class of semiparametric transformation cure models for interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 153-165.
    8. Xi Ning & Yinghao Pan & Yanqing Sun & Peter B. Gilbert, 2023. "A semiparametric Cox–Aalen transformation model with censored data," Biometrics, The International Biometric Society, vol. 79(4), pages 3111-3125, December.
    9. Ying Qing Chen & Nan Hu & Su-Chun Cheng & Philippa Musoke & Lue Ping Zhao, 2012. "Estimating Regression Parameters in an Extended Proportional Odds Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 318-330, March.
    10. Chyong-Mei Chen & Pao-Sheng Shen, 2018. "Conditional maximum likelihood estimation in semiparametric transformation model with LTRC data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 250-272, April.
    11. Man-Hua Chen & Xingwei Tong, 2020. "Varying coefficient transformation cure models for failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 518-544, July.
    12. Zhang, Hao Helen & Lu, Wenbin & Wang, Hansheng, 2010. "On sparse estimation for semiparametric linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1594-1606, August.
    13. Möst Lisa & Hothorn Torsten, 2015. "Conditional Transformation Models for Survivor Function Estimation," The International Journal of Biostatistics, De Gruyter, vol. 11(1), pages 23-50, May.
    14. Shen, Pao-sheng & Hsu, Huichen, 2020. "Conditional maximum likelihood estimation for semiparametric transformation models with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    15. Pao-sheng Shen & Yi Liu, 2019. "Pseudo maximum likelihood estimation for the Cox model with doubly truncated data," Statistical Papers, Springer, vol. 60(4), pages 1207-1224, August.
    16. Mingzhe Wu & Ming Zheng & Wen Yu & Ruofan Wu, 2018. "Estimation and variable selection for semiparametric transformation models under a more efficient cohort sampling design," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 570-596, September.
    17. Huang, Bin & Wang, Qihua, 2010. "Semiparametric analysis based on weighted estimating equations for transformation models with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2078-2090, October.
    18. Yu-Jen Cheng & Mei-Cheng Wang, 2015. "Causal estimation using semiparametric transformation models under prevalent sampling," Biometrics, The International Biometric Society, vol. 71(2), pages 302-312, June.
    19. Qiu, Zhiping & Zhou, Yong, 2015. "Partially linear transformation models with varying coefficients for multivariate failure time data," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 144-166.
    20. Yayuan Zhu & Ziqi Chen & Jerald F. Lawless, 2022. "Semiparametric analysis of interval‐censored failure time data with outcome‐dependent observation schemes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 236-264, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:123:y:2014:i:c:p:1-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.