IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v23y2017i6p507-534.html
   My bibliography  Save this article

How robust is the value-at-risk of credit risk portfolios?

Author

Listed:
  • Carole Bernard
  • Ludger Rüschendorf
  • Steven Vanduffel
  • Jing Yao

Abstract

In this paper, we assess the magnitude of model uncertainty of credit risk portfolio models, that is, what is the maximum and minimum value-at-risk (VaR) of a portfolio of risky loans that can be justified given a certain amount of available information. Puccetti and Rüschendorf [2012a. “Computation of Sharp Bounds on the Distribution of a Function of Dependent Risks”. Journal of Computational and Applied Maths 236, 1833–1840] and Embrechts, Puccetti, and Rüschendorf [2013. “Model Uncertainty and VaR Aggregation”. Journal of Banking and Finance 37, 2750–2764] propose the rearrangement algorithm (RA) as a general method to approximate VaR bounds when the loss distributions of the different loans are known but not their interdependence (unconstrained bounds). Their numerical results show that the gap between worst-case and best-case VaR is typically very high, a feature that can only be explained by lack of using dependence information. We propose a modification of the RA that makes it possible to approximate sharp VaR bounds when besides the marginal distributions also higher order moments of the aggregate portfolio such as variance and skewness are available as sources of dependence information. A numerical study shows that the use of moment information makes it possible to significantly improve the (unconstrained) VaR bounds. However, VaR assessments of credit portfolios that are performed at high confidence levels (as it is the case in Solvency II and Basel III) remain subject to significant model uncertainty and are not robust.

Suggested Citation

  • Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Jing Yao, 2017. "How robust is the value-at-risk of credit risk portfolios?," The European Journal of Finance, Taylor & Francis Journals, vol. 23(6), pages 507-534, May.
  • Handle: RePEc:taf:eurjfi:v:23:y:2017:i:6:p:507-534
    DOI: 10.1080/1351847X.2015.1104370
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1351847X.2015.1104370
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1351847X.2015.1104370?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carole Bernard & Michel Denuit & Steven Vanduffel, 2018. "Measuring Portfolio Risk Under Partial Dependence Information," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 85(3), pages 843-863, September.
    2. Daniel Roesch & Harald Scheule, 2007. "Stress-testing credit risk parameters: An application to retail loan portfolios," Published Paper Series 2007-1, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    3. Embrechts, Paul & Puccetti, Giovanni & Rüschendorf, Ludger, 2013. "Model uncertainty and VaR aggregation," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2750-2764.
    4. Michel Dietsch, 2004. "Should SME exposures be treated as retail or corporate exposures: a comparative analysis of probabilities of default and assets correlations in French and German SMEs," ULB Institutional Repository 2013/14164, ULB -- Universite Libre de Bruxelles.
    5. repec:uts:ppaper:v:1:y:2007:i:1:p:55-75 is not listed on IDEAS
    6. L. Rüschendorf, 1983. "Solution of a statistical optimization problem by rearrangement methods," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 30(1), pages 55-61, December.
    7. Denuit, M. & Genest, C. & Marceau, E., 1999. "Stochastic bounds on sums of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 85-104, September.
    8. Dietsch, Michel & Petey, Joel, 2004. "Should SME exposures be treated as retail or corporate exposures? A comparative analysis of default probabilities and asset correlations in French and German SMEs," Journal of Banking & Finance, Elsevier, vol. 28(4), pages 773-788, April.
    9. Gordy, Michael B., 2000. "A comparative anatomy of credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 119-149, January.
    10. Vanduffel, Steven & Shang, Zhaoning & Henrard, Luc & Dhaene, Jan & Valdez, Emiliano A., 2008. "Analytic bounds and approximations for annuities and Asian options," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1109-1117, June.
    11. Genest, Christian & Marceau, Étienne & Mesfioui, Mhamed, 2002. "Upper stop-loss bounds for sums of possibly dependent risks with given means and variances," Statistics & Probability Letters, Elsevier, vol. 57(1), pages 33-41, March.
    12. Vandendorpe, Antoine & Ho, Ngoc-Diep & Vanduffel, Steven & Van Dooren, Paul, 2008. "On the parameterization of the CreditRisk + model for estimating credit portfolio risk," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 736-745, April.
    13. Panjer, Harry H., 1981. "Recursive Evaluation of a Family of Compound Distributions," ASTIN Bulletin, Cambridge University Press, vol. 12(1), pages 22-26, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carole Bernard & Christoph M. Rheinberger & Nicolas Treich, 2018. "Catastrophe Aversion and Risk Equity in an Interdependent World," Management Science, INFORMS, vol. 64(10), pages 4490-4504, October.
    2. Carole Bernard & Oleg Bondarenko & Steven Vanduffel, 2018. "Rearrangement algorithm and maximum entropy," Annals of Operations Research, Springer, vol. 261(1), pages 107-134, February.
    3. Mats Wilhelmsson & Jianyu Zhao, 2018. "Risk Assessment of Housing Market Segments: The Lender’s Perspective," JRFM, MDPI, vol. 11(4), pages 1-22, October.
    4. Stephan Eckstein & Michael Kupper, 2018. "Computation of optimal transport and related hedging problems via penalization and neural networks," Papers 1802.08539, arXiv.org, revised Jan 2019.
    5. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Ruodu Wang, 2017. "Risk bounds for factor models," Finance and Stochastics, Springer, vol. 21(3), pages 631-659, July.
    6. Bernard, Carole & Kazzi, Rodrigue & Vanduffel, Steven, 2020. "Range Value-at-Risk bounds for unimodal distributions under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 9-24.
    7. Tuitman, Jan & Vanduffel, Steven & Yao, Jing, 2020. "Correlation matrices with average constraints," Statistics & Probability Letters, Elsevier, vol. 165(C).
    8. Hai Long Pham & Kevin James Daly, 2020. "The Impact of BASEL Accords on the Management of Vietnamese Commercial Banks," JRFM, MDPI, vol. 13(10), pages 1-13, September.
    9. Shi, Ruoshi & Zhao, Yanlong & Bao, Ying & Peng, Cheng, 2022. "Sensitivity-based Conditional Value at Risk (SCVaR): An efficient measurement of credit exposure for options," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    10. Kris Boudt & Edgars Jakobsons & Steven Vanduffel, 2018. "Block rearranging elements within matrix columns to minimize the variability of the row sums," 4OR, Springer, vol. 16(1), pages 31-50, March.
    11. H'el`ene Cossette & Etienne Marceau & Alessandro Mutti & Patrizia Semeraro, 2024. "Generalized FGM dependence: Geometrical representation and convex bounds on sums," Papers 2406.10648, arXiv.org, revised Oct 2024.
    12. Marius Hofert, 2020. "Implementing the Rearrangement Algorithm: An Example from Computational Risk Management," Risks, MDPI, vol. 8(2), pages 1-28, May.
    13. Hofert Marius & Memartoluie Amir & Saunders David & Wirjanto Tony, 2017. "Improved algorithms for computing worst Value-at-Risk," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 13-31, June.
    14. Rüschendorf Ludger & Witting Julian, 2017. "VaR bounds in models with partial dependence information on subgroups," Dependence Modeling, De Gruyter, vol. 5(1), pages 59-74, January.
    15. Claußen, Arndt & Rösch, Daniel & Schmelzle, Martin, 2019. "Hedging parameter risk," Journal of Banking & Finance, Elsevier, vol. 100(C), pages 111-121.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel, 2017. "Value-at-Risk Bounds With Variance Constraints," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(3), pages 923-959, September.
    2. Bernard, Carole & Kazzi, Rodrigue & Vanduffel, Steven, 2020. "Range Value-at-Risk bounds for unimodal distributions under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 9-24.
    3. Michel Dietsch, 2003. "De Bâle II vers Bâle III : les enjeux et les problèmes du nouvel Accord," Revue d'Économie Financière, Programme National Persée, vol. 73(4), pages 325-342.
    4. Klaus Duellmann & Jonathan Küll & Michael Kunisch, 2010. "Estimating asset correlations from stock prices or default rates - which method is superior?," Post-Print hal-00736734, HAL.
    5. Bank for International Settlements, 2011. "Portfolio and risk management for central banks and sovereign wealth funds," BIS Papers, Bank for International Settlements, number 58.
    6. Koopman, Siem Jan & Lucas, André, 2008. "A Non-Gaussian Panel Time Series Model for Estimating and Decomposing Default Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 510-525.
    7. M. Dietsch & K. Düllmann & H. Fraisse & P. Koziol & C. Ott, 2016. "Support for the SME Supporting Factor - Multi-country empirical evidence on systematic risk factor for SME loans," Débats économiques et financiers 23, Banque de France.
    8. Düllmann, Klaus & Koziol, Philipp, 2013. "Evaluation of minimum capital requirements for bank loans to SMEs," Discussion Papers 22/2013, Deutsche Bundesbank.
    9. Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2024. "Robust distortion risk measures," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 774-818, July.
    10. Koopman, Siem Jan & Lucas, Andre & Klaassen, Pieter, 2005. "Empirical credit cycles and capital buffer formation," Journal of Banking & Finance, Elsevier, vol. 29(12), pages 3159-3179, December.
    11. Lutz Hahnenstein, 2004. "Calibrating the CreditMetrics™ correlation concept — Empirical evidence from Germany," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 18(4), pages 358-381, December.
    12. Duellmann, Klaus & Küll, Jonathan & Kunisch, Michael, 2010. "Estimating asset correlations from stock prices or default rates--Which method is superior?," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2341-2357, November.
    13. Gürtler, Marc & Heithecker, Dirk, 2005. "Systematic credit cycle risk of financial collaterals: Modelling and evidence," Working Papers FW15V2, Technische Universität Braunschweig, Institute of Finance.
    14. J. Crook & T. Bellotti, 2012. "Asset correlations for credit card defaults," Applied Financial Economics, Taylor & Francis Journals, vol. 22(2), pages 87-95, January.
    15. Daniel Rösch & Harald Scheule, 2011. "Securitization rating performance and agency incentives," BIS Papers chapters, in: Bank for International Settlements (ed.), Portfolio and risk management for central banks and sovereign wealth funds, volume 58, pages 287-314, Bank for International Settlements.
    16. Mahlmann, Thomas, 2006. "Estimation of rating class transition probabilities with incomplete data," Journal of Banking & Finance, Elsevier, vol. 30(11), pages 3235-3256, November.
    17. Lee, Yongwoong & Rösch, Daniel & Scheule, Harald, 2021. "Systematic credit risk in securitised mortgage portfolios," Journal of Banking & Finance, Elsevier, vol. 122(C).
    18. Wolff, Christian & Bams, Dennis & Pisa, Magdalena, 2012. "Modeling default correlation in a US retail loan portfolio," CEPR Discussion Papers 9205, C.E.P.R. Discussion Papers.
    19. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Ruodu Wang, 2017. "Risk bounds for factor models," Finance and Stochastics, Springer, vol. 21(3), pages 631-659, July.
    20. Düllmann, Klaus & Kunisch, Michael & Küll, Jonathan, 2008. "Estimating asset correlations from stock prices or default rates: which method is superior?," Discussion Paper Series 2: Banking and Financial Studies 2008,04, Deutsche Bundesbank.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:23:y:2017:i:6:p:507-534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.