IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v57y2002i1p33-41.html
   My bibliography  Save this article

Upper stop-loss bounds for sums of possibly dependent risks with given means and variances

Author

Listed:
  • Genest, Christian
  • Marceau, Étienne
  • Mesfioui, Mhamed

Abstract

Consider non-negative random variables X1,...,Xn whose marginal means and variances are known. The purpose of this paper is to compare two different strategies for finding an upper bound on the stop-loss premium [pi](X1+...+Xn,d)=E{max (0,X1+...+Xn-d)} that are valid for all retention amounts d[greater-or-equal, slanted]0 in the absence of information concerning the type or degree of dependence between the risks Xi. One approach consists of maximizing the premium over all possible values [rho]ij=corr(Xi,Xj), 1[less-than-or-equals, slant]i

Suggested Citation

  • Genest, Christian & Marceau, Étienne & Mesfioui, Mhamed, 2002. "Upper stop-loss bounds for sums of possibly dependent risks with given means and variances," Statistics & Probability Letters, Elsevier, vol. 57(1), pages 33-41, March.
  • Handle: RePEc:eee:stapro:v:57:y:2002:i:1:p:33-41
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00039-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dhaene, Jan & Goovaerts, Marc J., 1996. "Dependency of Risks and Stop-Loss Order1," ASTIN Bulletin, Cambridge University Press, vol. 26(2), pages 201-212, November.
    2. Muller, Alfred, 1997. "Stop-loss order for portfolios of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 21(3), pages 219-223, December.
    3. Jansen, K. & Haezendonck, J. & Goovaerts, M. J., 1986. "Upper bounds on stop-loss premiums in case of known moments up to the fourth order," Insurance: Mathematics and Economics, Elsevier, vol. 5(4), pages 315-334, October.
    4. Wang, Shaun & Dhaene, Jan, 1998. "Comonotonicity, correlation order and premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 235-242, July.
    5. De Vylder, F. & Goovaerts, M. & De Pril, N., 1982. "Bounds on Modified Stop-Loss Premiums in Case of Known Mean and Variance of the Risk Variable," ASTIN Bulletin, Cambridge University Press, vol. 13(1), pages 23-36, June.
    6. Bühlmann, H. & Gagliardi, B. & Gerber, H. U. & Straub, E., 1977. "Some Inequalities for Stop-Loss Premiums," ASTIN Bulletin, Cambridge University Press, vol. 9(1-2), pages 75-83, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frangos, Nikolaos & Karlis, Dimitris, 2004. "Modelling losses using an exponential-inverse Gaussian distribution," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 53-67, August.
    2. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel, 2017. "Value-at-Risk Bounds With Variance Constraints," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(3), pages 923-959, September.
    3. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Jing Yao, 2017. "How robust is the value-at-risk of credit risk portfolios?," The European Journal of Finance, Taylor & Francis Journals, vol. 23(6), pages 507-534, May.
    4. Mesfioui, Mhamed & Quessy, Jean-Francois, 2005. "Bounds on the value-at-risk for the sum of possibly dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 135-151, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denuit, Michel & Vylder, Etienne De & Lefevre, Claude, 1999. "Extremal generators and extremal distributions for the continuous s-convex stochastic orderings," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 201-217, May.
    2. Albers, Willem, 1999. "Stop-loss premiums under dependence," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 173-185, May.
    3. Lu, Tong-Yu & Yi, Zhang, 2004. "Generalized correlation order and stop-loss order," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 69-76, August.
    4. Cheung, Ka Chun, 2010. "Comonotonic convex upper bound and majorization," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 154-158, October.
    5. Dhaene, Jan & Denuit, Michel & Vanduffel, Steven, 2009. "Correlation order, merging and diversification," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 325-332, December.
    6. Cheung, Ka Chun, 2006. "Optimal portfolio problem with unknown dependency structure," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 167-175, February.
    7. Cossette, Helene & Gaillardetz, Patrice & Marceau, Etienne & Rioux, Jacques, 2002. "On two dependent individual risk models," Insurance: Mathematics and Economics, Elsevier, vol. 30(2), pages 153-166, April.
    8. Goovaerts, M. J. & Dhaene, J., 1999. "Supermodular ordering and stochastic annuities," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 281-290, May.
    9. Yeo, Keng Leong & Valdez, Emiliano A., 2006. "Claim dependence with common effects in credibility models," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 609-629, June.
    10. Kaas, Rob & Laeven, Roger J.A. & Nelsen, Roger B., 2009. "Worst VaR scenarios with given marginals and measures of association," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 146-158, April.
    11. Yi, Zhang & Weng, Chengguo, 2006. "On the correlation order," Statistics & Probability Letters, Elsevier, vol. 76(13), pages 1410-1416, July.
    12. Dhaene, Jan & Denuit, Michel, 1999. "The safest dependence structure among risks," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 11-21, September.
    13. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    14. Irmina Czarna & Zbigniew Palmowski, 2009. "De Finetti's dividend problem and impulse control for a two-dimensional insurance risk process," Papers 0906.2100, arXiv.org, revised Feb 2011.
    15. Maria Mercè Claramunt & Maite Màrmol, 2020. "Refundable deductible insurance," Working Papers hal-02909299, HAL.
    16. Chan, Wai-Sum & Yang, Hailiang & Zhang, Lianzeng, 2003. "Some results on ruin probabilities in a two-dimensional risk model," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 345-358, July.
    17. Laurence, Peter & Wang, Tai-Ho, 2009. "Sharp distribution free lower bounds for spread options and the corresponding optimal subreplicating portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 35-47, February.
    18. Hu, Taizhong & Wu, Zhiqiang, 1999. "On dependence of risks and stop-loss premiums," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 323-332, May.
    19. Grzegorz Darkiewicz & Griselda Deelstra & Jan Dhaene & Tom Hoedemakers & Michèle Vanmaele, 2009. "Bounds for Right Tails of Deterministic and Stochastic Sums of Random Variables," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(4), pages 847-866, December.
    20. Chuancun Yin & Dan Zhu, 2016. "Sharp Convex Bounds on the Aggregate Sums–An Alternative Proof," Risks, MDPI, vol. 4(4), pages 1-8, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:57:y:2002:i:1:p:33-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.