IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2008i8p3988-3999.html
   My bibliography  Save this article

NHPP models with Markov switching for software reliability

Author

Listed:
  • Ravishanker, Nalini
  • Liu, Zhaohui
  • Ray, Bonnie K.

Abstract

We describe the use of a latent Markov process governing the parameters of a nonhomogeneous Poisson process (NHPP) model for characterizing the software development defect discovery process. Use of a Markov switching process allows us to characterize non-smooth variations in the rate at which defects are found, better reflecting the industrial software development environment in practice. Additionally, we propose a multivariate model for characterizing changes in the distribution of defect types that are found over time, conditional on the total number of defects. A latent Markov chain governs the evolution of probabilities of the different types. Bayesian methods via Markov chain Monte Carlo facilitate inference. We illustrate the efficacy of the methods using simulated data, then apply them to model reliability growth in a large operating system software component-based on defects discovered during the system testing phase of development.

Suggested Citation

  • Ravishanker, Nalini & Liu, Zhaohui & Ray, Bonnie K., 2008. "NHPP models with Markov switching for software reliability," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 3988-3999, April.
  • Handle: RePEc:eee:csdana:v:52:y:2008:i:8:p:3988-3999
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00011-X
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antonio Pievatolo & Fabrizio Ruggeri, 2004. "Bayesian reliability analysis of complex repairable systems," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 20(3), pages 253-264, July.
    2. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
    3. Zhaohui Liu & Nalini Ravishanker & Bonnie K. Ray, 2005. "NHPP models for categorized software defects," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 21(6), pages 509-524, November.
    4. Scott S. L., 2002. "Bayesian Methods for Hidden Markov Models: Recursive Computing in the 21st Century," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 337-351, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pievatolo, Antonio & Ruggeri, Fabrizio & Soyer, Refik, 2012. "A Bayesian hidden Markov model for imperfect debugging," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 11-21.
    2. Cong Lin & Lirong Cui & David Coit & Min Lv, 2017. "An approximation method for evaluating the reliability of a dynamic k-out-of-n:F system subjected to cyclic alternating operation conditions," Journal of Risk and Reliability, , vol. 231(2), pages 109-120, April.
    3. Aktekin, Tevfik & Caglar, Toros, 2013. "Imperfect debugging in software reliability: A Bayesian approach," European Journal of Operational Research, Elsevier, vol. 227(1), pages 112-121.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McCausland, William J., 2007. "Time reversibility of stationary regular finite-state Markov chains," Journal of Econometrics, Elsevier, vol. 136(1), pages 303-318, January.
    2. He, Zhongfang & Maheu, John M., 2010. "Real time detection of structural breaks in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2628-2640, November.
    3. Guedon, Yann, 2007. "Exploring the state sequence space for hidden Markov and semi-Markov chains," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2379-2409, February.
    4. Sims, Christopher A. & Waggoner, Daniel F. & Zha, Tao, 2008. "Methods for inference in large multiple-equation Markov-switching models," Journal of Econometrics, Elsevier, vol. 146(2), pages 255-274, October.
    5. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    6. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
    7. Prüser, Jan, 2017. "Forecasting US inflation using Markov dimension switching," Ruhr Economic Papers 710, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    8. Jochmann Markus & Koop Gary, 2015. "Regime-switching cointegration," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(1), pages 35-48, February.
    9. Chang, Yoosoon & Maih, Junior & Tan, Fei, 2021. "Origins of monetary policy shifts: A New approach to regime switching in DSGE models," Journal of Economic Dynamics and Control, Elsevier, vol. 133(C).
    10. Xianguo HUANG & Roberto LEON-GONZALEZ & Somrasri YUPHO, 2013. "Financial Integration from a Time-Varying Cointegration Perspective," Asian Journal of Empirical Research, Asian Economic and Social Society, vol. 3(12), pages 1473-1487.
    11. Mário Jorge Mendonça & Cláudio H. dos Santos, 2008. "Revisitando a Função de Reação Fiscal no Brasil Pós-Real: Uma Abordagem de Mudanças de Regime," Discussion Papers 1337, Instituto de Pesquisa Econômica Aplicada - IPEA.
    12. Balcilar, Mehmet & Gupta, Rangan & Miller, Stephen M., 2015. "Regime switching model of US crude oil and stock market prices: 1859 to 2013," Energy Economics, Elsevier, vol. 49(C), pages 317-327.
    13. Anatoliy Belaygorod & Michael J. Dueker, 2007. "The price puzzle and indeterminacy in an estimated DSGE model," Working Papers 2006-025, Federal Reserve Bank of St. Louis.
    14. Jia Liu & John M. Maheu & Yong Song, 2024. "Identification and forecasting of bull and bear markets using multivariate returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 723-745, August.
    15. Nima Nonejad, 2013. "Time-Consistency Problem and the Behavior of US Inflation from 1970 to 2008," CREATES Research Papers 2013-25, Department of Economics and Business Economics, Aarhus University.
    16. Hideo Kozumi, 2000. "Bayesian Analysis of Discrete Survival Data with a Hidden Markov Chain," Biometrics, The International Biometric Society, vol. 56(4), pages 1002-1006, December.
    17. Francesco Bianchi & Leonardo Melosi, 2017. "Escaping the Great Recession," American Economic Review, American Economic Association, vol. 107(4), pages 1030-1058, April.
    18. Yoosoon Chang & Fei Tan & Xin Wei, 2018. "State Space Models with Endogenous Regime Switching," CAEPR Working Papers 2018-012, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    19. Keisuke Kondo, 2022. "Spatial dependence in regional business cycles: evidence from Mexican states," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-46, December.
    20. Chan, Joshua C.C. & Santi, Caterina, 2021. "Speculative bubbles in present-value models: A Bayesian Markov-switching state space approach," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:8:p:3988-3999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.