IDEAS home Printed from https://ideas.repec.org/a/taf/conmgt/v34y2016i1p46-60.html
   My bibliography  Save this article

Assessing the impact of energy management initiatives on the energy usage during the construction phase of an educational building project in Ireland

Author

Listed:
  • Jan Gottsche
  • Mark Kelly
  • Martin Taggart

Abstract

The construction industry is estimated to account for 40% of annual global energy use and 30% of annual greenhouse gas (GHG) emissions. The Intergovernmental Panel on Climate Change (IPCC) has suggested the construction sector as best placed to improve its energy performance in order to help Ireland to meet the European Union (EU) GHG reduction target of 20% by 2020. An action research (AR) approach was used to explore the construction phase energy reduction opportunities on a selected case study in the West of Ireland. The participating contractor’s current onsite energy management practices were benchmarked to inform the implementation of a series of quick-win measures at a cost of €706.04. The resultant savings of €19 853.03 represented 17.5% of the total expenditure on energy usage on site (€113 397) and resulted in an estimated saving of 5.5% of the assumed project profit (€358 800). A set of key performance indicators (KPIs) were calculated for both phases of the project with a 75% reduction in the cost of electricity per floor area from phase 1 to phase 2. The findings suggest that improving site energy use provides scope for the contractor to increase profit margins, improve resource efficiency and reduce environmental impacts.

Suggested Citation

  • Jan Gottsche & Mark Kelly & Martin Taggart, 2016. "Assessing the impact of energy management initiatives on the energy usage during the construction phase of an educational building project in Ireland," Construction Management and Economics, Taylor & Francis Journals, vol. 34(1), pages 46-60, January.
  • Handle: RePEc:taf:conmgt:v:34:y:2016:i:1:p:46-60
    DOI: 10.1080/01446193.2016.1162317
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01446193.2016.1162317
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01446193.2016.1162317?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yohanis, Y.G. & Norton, B., 2002. "Life-cycle operational and embodied energy for a generic single-storey office building in the UK," Energy, Elsevier, vol. 27(1), pages 77-92.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Vasilska, 2021. "Characteristics of Strategic Subcontracting Relations of Industrial SMEs," European Journal of Economics and Business Studies Articles, Revistia Research and Publishing, vol. 7, ejes_v7_i.
    2. Ayomikun Solomon Adewumi & Alex Opoku & Zainab Dangana, 2024. "Sustainability assessment frameworks for delivering Environmental, Social, and Governance (ESG) targets: A case of Building Research Establishment Environmental Assessment Method (BREEAM) UK New Const," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(5), pages 3779-3791, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georgiadou, Maria Christina & Hacking, Theophilus & Guthrie, Peter, 2012. "A conceptual framework for future-proofing the energy performance of buildings," Energy Policy, Elsevier, vol. 47(C), pages 145-155.
    2. Chandratilake, S.R. & Dias, W.P.S., 2013. "Sustainability rating systems for buildings: Comparisons and correlations," Energy, Elsevier, vol. 59(C), pages 22-28.
    3. Mohamed, Ahmed M.A. & Al-Habaibeh, Amin & Abdo, Hafez & Elabar, Sherifa, 2015. "Towards exporting renewable energy from MENA region to Europe: An investigation into domestic energy use and householders’ energy behaviour in Libya," Applied Energy, Elsevier, vol. 146(C), pages 247-262.
    4. Bin, Guoshu & Parker, Paul, 2012. "Measuring buildings for sustainability: Comparing the initial and retrofit ecological footprint of a century home – The REEP House," Applied Energy, Elsevier, vol. 93(C), pages 24-32.
    5. Rai, Deepak & Sodagar, Behzad & Fieldson, Rosi & Hu, Xiao, 2011. "Assessment of CO2 emissions reduction in a distribution warehouse," Energy, Elsevier, vol. 36(4), pages 2271-2277.
    6. Dowson, Mark & Poole, Adam & Harrison, David & Susman, Gideon, 2012. "Domestic UK retrofit challenge: Barriers, incentives and current performance leading into the Green Deal," Energy Policy, Elsevier, vol. 50(C), pages 294-305.
    7. Ignacio Zabalza & Sabina Scarpellini & Alfonso Aranda & Eva Llera & Alberto Jáñez, 2013. "Use of LCA as a Tool for Building Ecodesign. A Case Study of a Low Energy Building in Spain," Energies, MDPI, vol. 6(8), pages 1-21, August.
    8. Reza Broun & Hamed Babaizadeh & Abolfazl Zakersalehi & Gillian F. Menzies, 2014. "Integrated Life Cycle Energy and Greenhouse Gas Analysis of Exterior Wall Systems for Residential Buildings," Sustainability, MDPI, vol. 6(12), pages 1-12, November.
    9. Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
    10. Browne, David & O'Regan, Bernadette & Moles, Richard, 2009. "Use of ecological footprinting to explore alternative domestic energy and electricity policy scenarios in an Irish city-region," Energy Policy, Elsevier, vol. 37(6), pages 2205-2213, June.
    11. Malmqvist, Tove & Glaumann, Mauritz & Scarpellini, Sabina & Zabalza, Ignacio & Aranda, Alfonso & Llera, Eva & Díaz, Sergio, 2011. "Life cycle assessment in buildings: The ENSLIC simplified method and guidelines," Energy, Elsevier, vol. 36(4), pages 1900-1907.
    12. Yvan Dutil & Daniel Rousse, 2012. "Energy Costs of Energy Savings in Buildings: A Review," Sustainability, MDPI, vol. 4(8), pages 1-22, August.
    13. Cassandra L. Thiel & Nicole Campion & Amy E. Landis & Alex K. Jones & Laura A. Schaefer & Melissa M. Bilec, 2013. "A Materials Life Cycle Assessment of a Net-Zero Energy Building," Energies, MDPI, vol. 6(2), pages 1-17, February.
    14. Rauf, Abdul & Crawford, Robert H., 2015. "Building service life and its effect on the life cycle embodied energy of buildings," Energy, Elsevier, vol. 79(C), pages 140-148.
    15. Malmqvist, Tove & Glaumann, Mauritz & Svenfelt, Åsa & Carlson, Per-Olof & Erlandsson, Martin & Andersson, Johnny & Wintzell, Helene & Finnveden, Göran & Lindholm, Torbjörn & Malmström, Tor-Göran, 2011. "A Swedish environmental rating tool for buildings," Energy, Elsevier, vol. 36(4), pages 1893-1899.
    16. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    17. Chau, C.K. & Hui, W.K. & Ng, W.Y. & Powell, G., 2012. "Assessment of CO2 emissions reduction in high-rise concrete office buildings using different material use options," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 22-34.
    18. Venkatraj, V. & Dixit, M.K., 2021. "Life cycle embodied energy analysis of higher education buildings: A comparison between different LCI methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    19. Browne, David & O’Regan, Bernadette & Moles, Richard, 2009. "Use of carbon footprinting to explore alternative household waste policy scenarios in an Irish city-region," Resources, Conservation & Recycling, Elsevier, vol. 54(2), pages 113-122.
    20. Golnaz Mohebbi & Ali Bahadori-Jahromi & Marco Ferri & Anastasia Mylona, 2021. "The Role of Embodied Carbon Databases in the Accuracy of Life Cycle Assessment (LCA) Calculations for the Embodied Carbon of Buildings," Sustainability, MDPI, vol. 13(14), pages 1-22, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:conmgt:v:34:y:2016:i:1:p:46-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RCME20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.