IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v27y2002i1p77-92.html
   My bibliography  Save this article

Life-cycle operational and embodied energy for a generic single-storey office building in the UK

Author

Listed:
  • Yohanis, Y.G.
  • Norton, B.

Abstract

Increasing energy efficiency makes embodied energy considerations increasingly significant. The energy initially embodied in a building could be as much as 67% of its operating energy over a 25-year period. If additional embodied energy gained over the building life is also included, the total life-cycle energy could be larger than the operating energy over the same period. Currently, embodied energy cannot be predicted accurately due to lack of reliable and accurate data; there is a wide variation in the data available. The variation of life-cycle operational and embodied energy and capital cost as a function of building parameters is explored.

Suggested Citation

  • Yohanis, Y.G. & Norton, B., 2002. "Life-cycle operational and embodied energy for a generic single-storey office building in the UK," Energy, Elsevier, vol. 27(1), pages 77-92.
  • Handle: RePEc:eee:energy:v:27:y:2002:i:1:p:77-92
    DOI: 10.1016/S0360-5442(01)00061-5
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544201000615
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(01)00061-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yohanis, Y. G. & Norton, B., 1999. "Utilization factor for building solar-heat gain for use in a simplified energy model," Applied Energy, Elsevier, vol. 63(4), pages 227-239, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cuce, Erdem & Riffat, Saffa B., 2015. "A state-of-the-art review on innovative glazing technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 695-714.
    2. Mechri, Houcem Eddine & Capozzoli, Alfonso & Corrado, Vincenzo, 2010. "USE of the ANOVA approach for sensitive building energy design," Applied Energy, Elsevier, vol. 87(10), pages 3073-3083, October.
    3. Verbeke, Stijn & Audenaert, Amaryllis, 2018. "Thermal inertia in buildings: A review of impacts across climate and building use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2300-2318.
    4. Ghosh, Aritra & Norton, Brian & Duffy, Aidan, 2015. "Measured overall heat transfer coefficient of a suspended particle device switchable glazing," Applied Energy, Elsevier, vol. 159(C), pages 362-369.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:27:y:2002:i:1:p:77-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.