IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v23y2016i6p445-464.html
   My bibliography  Save this article

Eurodollar futures pricing in log-normal interest rate models in discrete time

Author

Listed:
  • Dan Pirjol

Abstract

We demonstrate the appearance of explosions in three quantities in interest rate models with log-normally distributed rates in discrete time. (1) The expectation of the money market account in the Black, Derman, Toy model, (2) the prices of Eurodollar futures contracts in a model with log-normally distributed rates in the terminal measure and (3) the prices of Eurodollar futures contracts in the one-factor log-normal Libor market model (LMM). We derive exact upper and lower bounds on the prices and on the standard deviation of the Monte Carlo pricing of Eurodollar futures in the one factor log-normal Libor market model. These bounds explode at a non-zero value of volatility, and thus imply a limitation on the applicability of the LMM and on its Monte Carlo simulation to sufficiently low volatilities.

Suggested Citation

  • Dan Pirjol, 2016. "Eurodollar futures pricing in log-normal interest rate models in discrete time," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(6), pages 445-464, November.
  • Handle: RePEc:taf:apmtfi:v:23:y:2016:i:6:p:445-464
    DOI: 10.1080/1350486X.2017.1297727
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1350486X.2017.1297727
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1350486X.2017.1297727?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    2. Henrard Marc, 2005. "Eurodollar futures and options: convexity adjustment in HJM one- factor model," Finance 0503005, University Library of Munich, Germany.
    3. Pozdnyakov, Vladimir & Steele, J. Michael, 2004. "On the martingale framework for futures prices," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 69-77, January.
    4. Dan Pirjol, 2013. "Explosive Behavior In A Log-Normal Interest Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1-23.
    5. Klaus Sandmann & Dieter Sondermann, 1997. "A Note on the Stability of Lognormal Interest Rate Models and the Pricing of Eurodollar Futures," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 119-125, April.
    6. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    7. Dan Pirjol, 2015. "Hogan-Weintraub singularity and explosive behaviour in the Black-Derman-Toy model," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1243-1257, July.
    8. P. Balland & L. P. Hughston, 2000. "Markov Market Model Consistent With Cap Smile," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 161-181.
    9. Joanne Kennedy & Phil Hunt & Antoon Pelsser, 2000. "Markov-functional interest rate models," Finance and Stochastics, Springer, vol. 4(4), pages 391-408.
    10. Gerhold, Stefan, 2011. "Moment explosion in the LIBOR market model," Statistics & Probability Letters, Elsevier, vol. 81(5), pages 560-562, May.
    11. Dan Pirjol, 2011. "Explosive behavior in a log-normal interest rate model," Papers 1104.0322, arXiv.org, revised Jul 2013.
    12. Leif Andersen & Vladimir Piterbarg, 2007. "Moment explosions in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(1), pages 29-50, January.
    13. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. "Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    14. Torben G. Andersen & Luca Benzoni, 2009. "Stochastic volatility," Working Paper Series WP-09-04, Federal Reserve Bank of Chicago.
    15. Dothan, L. Uri, 1978. "On the term structure of interest rates," Journal of Financial Economics, Elsevier, vol. 6(1), pages 59-69, March.
    16. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155, April.
    17. Cox, John C. & Ingersoll, Jonathan Jr. & Ross, Stephen A., 1981. "The relation between forward prices and futures prices," Journal of Financial Economics, Elsevier, vol. 9(4), pages 321-346, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Pirjol, 2013. "Explosive Behavior In A Log-Normal Interest Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1-23.
    2. Dan Pirjol, 2015. "Hogan-Weintraub singularity and explosive behaviour in the Black-Derman-Toy model," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1243-1257, July.
    3. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    4. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    5. P. Karlsson & K. F. Pilz & E. Schlögl, 2017. "Calibrating a market model with stochastic volatility to commodity and interest rate risk," Quantitative Finance, Taylor & Francis Journals, vol. 17(6), pages 907-925, June.
    6. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    7. repec:uts:finphd:40 is not listed on IDEAS
    8. Jaka Gogala & Joanne E. Kennedy, 2017. "CLASSIFICATION OF TWO- AND THREE-FACTOR TIME-HOMOGENEOUS SEPARABLE LMMs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-44, March.
    9. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    10. Raoul Pietersz & Antoon Pelsser, 2010. "A comparison of single factor Markov-functional and multi factor market models," Review of Derivatives Research, Springer, vol. 13(3), pages 245-272, October.
    11. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.
    12. K. F. Pilz & E. Schlögl, 2013. "A hybrid commodity and interest rate market model," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 543-560, March.
    13. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    14. Takashi Yasuoka, 2001. "Mathematical Pseudo-Completion Of The Bgm Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 375-401.
    15. Junwu Gan, 2014. "An almost Markovian LIBOR market model calibrated to caps and swaptions," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 1937-1959, November.
    16. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    17. Robert J. Elliott & Tak Kuen Siu, 2016. "Pricing regime-switching risk in an HJM interest rate environment," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1791-1800, December.
    18. Bueno-Guerrero, Alberto & Moreno, Manuel & Navas, Javier F., 2020. "Valuation of caps and swaptions under a stochastic string model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    19. Joanne Kennedy & Phil Hunt & Antoon Pelsser, 2000. "Markov-functional interest rate models," Finance and Stochastics, Springer, vol. 4(4), pages 391-408.
    20. Simon H. Babbs, 2002. "Conditional Gaussian models of the term structure of interest rates," Finance and Stochastics, Springer, vol. 6(3), pages 333-353.
    21. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:23:y:2016:i:6:p:445-464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.