IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v17y2017i6p907-925.html
   My bibliography  Save this article

Calibrating a market model with stochastic volatility to commodity and interest rate risk

Author

Listed:
  • P. Karlsson
  • K. F. Pilz
  • E. Schlögl

Abstract

Based on the multi-currency LIBOR Market Model, this paper constructs a hybrid commodity interest rate market model with a stochastic local volatility function allowing the model to simultaneously fit the implied volatility surfaces of commodity and interest rate options. Since liquid market prices are only available for options on commodity futures, rather than forwards, a convexity correction formula for the model is derived to account for the difference between forward and futures prices. A procedure for efficiently calibrating the model to interest rate and commodity volatility smiles is constructed. Finally, the model is fitted to an exogenously given correlation structure between forward interest rates and commodity prices (cross-correlation). When calibrating to options on forwards (rather than futures), the fitting of cross-correlation preserves the (separate) calibration in the two markets (interest rate and commodity options), while in the case of futures a (rapidly converging) iterative fitting procedure is presented. The fitting of cross-correlation is reduced to finding an optimal rotation of volatility vectors, which is shown to be an appropriately modified version of the ‘orthonormal Procrustes’ problem in linear algebra. The calibration approach is demonstrated in an application to market data for oil futures.

Suggested Citation

  • P. Karlsson & K. F. Pilz & E. Schlögl, 2017. "Calibrating a market model with stochastic volatility to commodity and interest rate risk," Quantitative Finance, Taylor & Francis Journals, vol. 17(6), pages 907-925, June.
  • Handle: RePEc:taf:quantf:v:17:y:2017:i:6:p:907-925
    DOI: 10.1080/14697688.2016.1254814
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2016.1254814
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2016.1254814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2016. "Empirical Hedging Performance on Long-Dated Crude Oil Derivatives," Research Paper Series 376, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. K. R. Miltersen, 2003. "Commodity price modelling that matches current observables: a new approach," Quantitative Finance, Taylor & Francis Journals, vol. 3(1), pages 51-58.
    3. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    4. Mark Joshi & Riccardo Rebonato, 2003. "A displaced-diffusion stochastic volatility LIBOR market model: motivation, definition and implementation," Quantitative Finance, Taylor & Francis Journals, vol. 3(6), pages 458-469.
    5. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2016. "Empirical Pricing Performance in Long-Dated Crude Oil Derivatives: Do Models with Stochastic Interest Rates Matter?," Research Paper Series 367, Quantitative Finance Research Centre, University of Technology, Sydney.
    6. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    7. Lech A. Grzelak & Cornelis W. Oosterlee, 2012. "On Cross-Currency Models with Stochastic Volatility and Correlated Interest Rates," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(1), pages 1-35, February.
    8. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2015. "Pricing of Long-dated Commodity Derivatives with Stochastic Volatility and Stochastic Interest Rates," Research Paper Series 366, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Martin Koschat & Deborah Swayne, 1991. "A weighted procrustes criterion," Psychometrika, Springer;The Psychometric Society, vol. 56(2), pages 229-239, June.
    10. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    11. Schwartz, Eduardo S, 1982. "The Pricing of Commodity-Linked Bonds," Journal of Finance, American Finance Association, vol. 37(2), pages 525-539, May.
    12. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2016. "Hedging Futures Options with Stochastic Interest Rates," Research Paper Series 375, Quantitative Finance Research Centre, University of Technology, Sydney.
    13. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. "Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    14. Torben G. Andersen & Luca Benzoni, 2009. "Stochastic volatility," Working Paper Series WP-09-04, Federal Reserve Bank of Chicago.
    15. Grzelak, Lech & Oosterlee, Kees, 2009. "On The Heston Model with Stochastic Interest Rates," MPRA Paper 20620, University Library of Munich, Germany, revised 18 Jan 2010.
    16. Gibson, Rajna & Schwartz, Eduardo S, 1990. "Stochastic Convenience Yield and the Pricing of Oil Contingent Claims," Journal of Finance, American Finance Association, vol. 45(3), pages 959-976, July.
    17. Miltersen, Kristian R. & Schwartz, Eduardo S., 1998. "Pricing of Options on Commodity Futures with Stochastic Term Structures of Convenience Yields and Interest Rates," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(1), pages 33-59, March.
    18. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155, April.
    19. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    20. Cheng, Benjamin & Nikitopoulos, Christina Sklibosios & Schlögl, Erik, 2018. "Pricing of long-dated commodity derivatives: Do stochastic interest rates matter?," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 148-166.
    21. Cox, John C. & Ingersoll, Jonathan Jr. & Ross, Stephen A., 1981. "The relation between forward prices and futures prices," Journal of Financial Economics, Elsevier, vol. 9(4), pages 321-346, December.
    22. K. F. Pilz & E. Schlögl, 2013. "A hybrid commodity and interest rate market model," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 543-560, March.
    23. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Tin Chun Cheng, 2017. "Pricing and Hedging of Long-Dated Commodity Derivatives," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2017, January-A.
    2. repec:uts:finphd:37 is not listed on IDEAS
    3. K. F. Pilz & E. Schlögl, 2013. "A hybrid commodity and interest rate market model," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 543-560, March.
    4. Patrik Karlsson & Kay F Pilz & Erik Schlogl, 2016. "Calibrating Market Model to Commodity and Interest Rate Risk," Research Paper Series 372, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Anh Ngoc Lai & Constantin Mellios, 2016. "Valuation of commodity derivatives with an unobservable convenience yield," Post-Print halshs-01183166, HAL.
    6. Bisht Deepak & Laha, A. K., 2017. "Pricing Option on Commodity Futures under String Shock," IIMA Working Papers WP 2017-07-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    7. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    8. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    9. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    10. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2015. "Pricing of Long-dated Commodity Derivatives with Stochastic Volatility and Stochastic Interest Rates," Research Paper Series 366, Quantitative Finance Research Centre, University of Technology, Sydney.
    11. John Crosby, 2008. "A multi-factor jump-diffusion model for commodities," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 181-200.
    12. Cheng, Benjamin & Nikitopoulos, Christina Sklibosios & Schlögl, Erik, 2018. "Pricing of long-dated commodity derivatives: Do stochastic interest rates matter?," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 148-166.
    13. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2, July-Dece.
    14. Calum G. Turvey, 2006. "Managing food industry business and financial risks with commodity-linked credit instruments," Agribusiness, John Wiley & Sons, Ltd., vol. 22(4), pages 523-545.
    15. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2016. "Empirical Pricing Performance in Long-Dated Crude Oil Derivatives: Do Models with Stochastic Interest Rates Matter?," Research Paper Series 367, Quantitative Finance Research Centre, University of Technology, Sydney.
    16. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    17. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013, January-A.
    18. Crosby, John & Frau, Carme, 2022. "Jumps in commodity prices: New approaches for pricing plain vanilla options," Energy Economics, Elsevier, vol. 114(C).
    19. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    20. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    21. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2016. "Hedging Futures Options with Stochastic Interest Rates," Research Paper Series 375, Quantitative Finance Research Centre, University of Technology, Sydney.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:17:y:2017:i:6:p:907-925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.