IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v15y2015i7p1243-1257.html
   My bibliography  Save this article

Hogan-Weintraub singularity and explosive behaviour in the Black-Derman-Toy model

Author

Listed:
  • Dan Pirjol

Abstract

We consider the simulation of the Black, Derman, Toy model with log-normally distributed rates in the spot measure, simulated in discrete time and with a continuous state variable. We note an explosive behaviour in the Eurodollar futures convexity adjustment at a critical value of the volatility, which depends on the maturity, the rate tenor and simulation time step size. In the limit of a very small simulation time step , this singularity appears for any volatility and reproduces the Hogan-Weintraub singularity, which is generic for short rate interest rate models with log-normally distributed rates. The singular behaviour arises from a region in the state space which is usually truncated off in finite difference and grid methods, and poorly sampled in Monte Carlo methods, and thus is not observed under usual simulation methods. We study the conditions under which this transition appears and give upper and lower bounds on the critical volatility.

Suggested Citation

  • Dan Pirjol, 2015. "Hogan-Weintraub singularity and explosive behaviour in the Black-Derman-Toy model," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1243-1257, July.
  • Handle: RePEc:taf:quantf:v:15:y:2015:i:7:p:1243-1257
    DOI: 10.1080/14697688.2014.943274
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2014.943274
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2014.943274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    2. Patrick Hagan & Diana Woodward, 1999. "Markov interest rate models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(4), pages 233-260.
    3. Dan Pirjol, 2012. "Equivalence of interest rate models and lattice gases," Papers 1204.0915, arXiv.org.
    4. Michael Sullivan, 1999. "Discrete-Time Continuous-State Interest Rate Models," Computing in Economics and Finance 1999 913, Society for Computational Economics.
    5. Baxter,Martin & Rennie,Andrew, 1996. "Financial Calculus," Cambridge Books, Cambridge University Press, number 9780521552899, October.
    6. Klaus Sandmann & Dieter Sondermann, 1997. "A Note on the Stability of Lognormal Interest Rate Models and the Pricing of Eurodollar Futures," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 119-125, April.
    7. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    8. Dan Pirjol, 2010. "Phase transition in a log-normal Markov functional model," Papers 1007.0691, arXiv.org, revised Jan 2011.
    9. Leif Andersen & Vladimir Piterbarg, 2007. "Moment explosions in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(1), pages 29-50, January.
    10. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. "Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    11. Torben G. Andersen & Luca Benzoni, 2009. "Stochastic volatility," Working Paper Series WP-09-04, Federal Reserve Bank of Chicago.
    12. Dothan, L. Uri, 1978. "On the term structure of interest rates," Journal of Financial Economics, Elsevier, vol. 6(1), pages 59-69, March.
    13. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155, April.
    14. Phelim Boyle & Ken Seng Tan & Weidong Tian, 2001. "Calibrating the Black-Derman-Toy model: some theoretical results," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(1), pages 27-48.
    15. A. Sullivan, Michael, 2001. "Discrete-time continuous-state interest rate models," Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 1001-1017, June.
    16. Fabricio Tourrucoo & Patrick S. Hagan & Gilberto F. Schleiniger, 2007. "Approximate Formulas for Zero-coupon Bonds," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(3), pages 207-226.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Pirjol, 2016. "Eurodollar futures pricing in log-normal interest rate models in discrete time," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(6), pages 445-464, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Pirjol, 2013. "Explosive Behavior In A Log-Normal Interest Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1-23.
    2. Dan Pirjol, 2016. "Eurodollar futures pricing in log-normal interest rate models in discrete time," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(6), pages 445-464, November.
    3. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    4. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    5. Takashi Yasuoka, 2001. "Mathematical Pseudo-Completion Of The Bgm Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 375-401.
    6. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    7. Robert J. Elliott & Tak Kuen Siu, 2016. "Pricing regime-switching risk in an HJM interest rate environment," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1791-1800, December.
    8. P. Karlsson & K. F. Pilz & E. Schlögl, 2017. "Calibrating a market model with stochastic volatility to commodity and interest rate risk," Quantitative Finance, Taylor & Francis Journals, vol. 17(6), pages 907-925, June.
    9. Bueno-Guerrero, Alberto & Moreno, Manuel & Navas, Javier F., 2020. "Valuation of caps and swaptions under a stochastic string model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    10. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    11. repec:uts:finphd:40 is not listed on IDEAS
    12. Zhanyu Chen & Kai Zhang & Hongbiao Zhao, 2022. "A Skellam market model for loan prime rate options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(3), pages 525-551, March.
    13. Dai, Qiang & Singleton, Kenneth J., 2003. "Fixed-income pricing," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 20, pages 1207-1246, Elsevier.
    14. Jaka Gogala & Joanne E. Kennedy, 2017. "CLASSIFICATION OF TWO- AND THREE-FACTOR TIME-HOMOGENEOUS SEPARABLE LMMs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-44, March.
    15. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    16. Raoul Pietersz & Antoon Pelsser, 2010. "A comparison of single factor Markov-functional and multi factor market models," Review of Derivatives Research, Springer, vol. 13(3), pages 245-272, October.
    17. Yongwoong Lee & Kisung Yang, 2020. "Finite Difference Method for the Hull–White Partial Differential Equations," Mathematics, MDPI, vol. 8(10), pages 1-11, October.
    18. Jui‐Jane Chang & Son‐Nan Chen & Ting‐Pin Wu, 2013. "Currency‐Protected Swaps and Swaptions with Nonzero Spreads in a Multicurrency LMM," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(9), pages 827-867, September.
    19. Matthias Muck, 2012. "Spread ladder swaps—an analysis of controversial interest rate derivatives," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(2), pages 269-289, June.
    20. Marek Musiela, 2022. "My journey through finance and stochastics," Finance and Stochastics, Springer, vol. 26(1), pages 33-58, January.
    21. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:15:y:2015:i:7:p:1243-1257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.