IDEAS home Printed from https://ideas.repec.org/p/fip/fedhwp/wp-09-04.html
   My bibliography  Save this paper

Stochastic volatility

Author

Listed:
  • Torben G. Andersen
  • Luca Benzoni

Abstract

Given the importance of return volatility on a number of practical financial management decisions, the efforts to provide good real- time estimates and forecasts of current and future volatility have been extensive. The main framework used in this context involves stochastic volatility models. In a broad sense, this model class includes GARCH, but we focus on a narrower set of specifications in which volatility follows its own random process, as is common in models originating within financial economics. The distinguishing feature of these specifications is that volatility, being inherently unobservable and subject to independent random shocks, is not measurable with respect to observable information. In what follows, we refer to these models as genuine stochastic volatility models. Much modern asset pricing theory is built on continuous- time models. The natural concept of volatility within this setting is that of genuine stochastic volatility. For example, stochastic-volatility (jump-) diffusions have provided a useful tool for a wide range of applications, including the pricing of options and other derivatives, the modeling of the term structure of risk-free interest rates, and the pricing of foreign currencies and defaultable bonds. The increased use of intraday transaction data for construction of so-called realized volatility measures provides additional impetus for considering genuine stochastic volatility models. As we demonstrate below, the realized volatility approach is closely associated with the continuous-time stochastic volatility framework of financial economics. There are some unique challenges in dealing with genuine stochastic volatility models. For example, volatility is truly latent and this feature complicates estimation and inference. Further, the presence of an additional state variable - volatility - renders the model less tractable from an analytic perspective. We examine how such challenges have been addressed through development of new estimation methods and imposition of model restrictions allowing for closed-form solutions while remaining consistent with the dominant empirical features of the data.

Suggested Citation

  • Torben G. Andersen & Luca Benzoni, 2009. "Stochastic volatility," Working Paper Series WP-09-04, Federal Reserve Bank of Chicago.
  • Handle: RePEc:fip:fedhwp:wp-09-04
    as

    Download full text from publisher

    File URL: http://www.chicagofed.org/digital_assets/publications/working_papers/2009/wp2009_04.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    Stochastic analysis;

    JEL classification:

    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedhwp:wp-09-04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lauren Wiese (email available below). General contact details of provider: https://edirc.repec.org/data/frbchus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.