IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v14y2014i11p1937-1959.html
   My bibliography  Save this article

An almost Markovian LIBOR market model calibrated to caps and swaptions

Author

Listed:
  • Junwu Gan

Abstract

A new variant of the LIBOR market model is implemented and calibrated simultaneously to both at-the-money and out-of-the-money caps and swaptions. This model is a two-factor version of a new class of the almost Markovian LIBOR market models with properties long sought after: (i) the almost Markovian parameterization of the LIBOR market model volatility functions is unique and asymptotically exact in the limit of a short time horizon up to a few years, (ii) only minimum plausible assumptions are required to derive the implemented volatility parameterization, (iii) the calibration yields very good results, (iv) the calibration is almost immediate, (v) the implemented LIBOR market model has a related short-rate model. Numerical results for the two-factor case show that the volatility functions for the LIBOR market model can be imported into its short-rate model cousin without adjustment.

Suggested Citation

  • Junwu Gan, 2014. "An almost Markovian LIBOR market model calibrated to caps and swaptions," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 1937-1959, November.
  • Handle: RePEc:taf:quantf:v:14:y:2014:i:11:p:1937-1959
    DOI: 10.1080/14697688.2013.779012
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2013.779012
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2013.779012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    2. R. Bhar & C. Chiarella, 1997. "Transformation of Heath?Jarrow?Morton models to Markovian systems," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 1-26, March.
    3. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    4. P. Balland & L. P. Hughston, 2000. "Markov Market Model Consistent With Cap Smile," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 161-181.
    5. Joanne Kennedy & Phil Hunt & Antoon Pelsser, 2000. "Markov-functional interest rate models," Finance and Stochastics, Springer, vol. 4(4), pages 391-408.
    6. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155, April.
    7. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    8. Junwu Gan, 2005. "Analytic Backward Induction Of Option Cash Flows: A New Application Paradigm For The Markovian Interest Rate Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(08), pages 1019-1057.
    9. Alan Brace & Marek Musiela, 1994. "A Multifactor Gauss Markov Implementation Of Heath, Jarrow, And Morton," Mathematical Finance, Wiley Blackwell, vol. 4(3), pages 259-283, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    2. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, May.
    3. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    4. Dan Pirjol, 2016. "Eurodollar futures pricing in log-normal interest rate models in discrete time," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(6), pages 445-464, November.
    5. repec:uts:finphd:40 is not listed on IDEAS
    6. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    7. Zhanyu Chen & Kai Zhang & Hongbiao Zhao, 2022. "A Skellam market model for loan prime rate options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(3), pages 525-551, March.
    8. Dai, Qiang & Singleton, Kenneth J., 2003. "Fixed-income pricing," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 20, pages 1207-1246, Elsevier.
    9. Jaka Gogala & Joanne E. Kennedy, 2017. "CLASSIFICATION OF TWO- AND THREE-FACTOR TIME-HOMOGENEOUS SEPARABLE LMMs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-44, March.
    10. Jui‐Jane Chang & Son‐Nan Chen & Ting‐Pin Wu, 2013. "Currency‐Protected Swaps and Swaptions with Nonzero Spreads in a Multicurrency LMM," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(9), pages 827-867, September.
    11. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.
    12. Dan Pirjol, 2013. "Explosive Behavior In A Log-Normal Interest Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1-23.
    13. Peter Aling & Shakill Hassan, 2012. "No-Arbitrage One-Factor Models Of The South African Term Structure Of Interest Rates," South African Journal of Economics, Economic Society of South Africa, vol. 80(3), pages 301-318, September.
    14. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    15. Takashi Yasuoka, 2001. "Mathematical Pseudo-Completion Of The Bgm Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 375-401.
    16. Gibson, Rajna & Lhabitant, Francois-Serge & Talay, Denis, 2010. "Modeling the Term Structure of Interest Rates: A Review of the Literature," Foundations and Trends(R) in Finance, now publishers, vol. 5(1–2), pages 1-156, December.
    17. Robert J. Elliott & Tak Kuen Siu, 2016. "Pricing regime-switching risk in an HJM interest rate environment," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1791-1800, December.
    18. Gunter Meissner & Seth Rooder & Kristofor Fan, 2013. "The impact of different correlation approaches on valuing credit default swaps with counterparty risk," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1903-1913, December.
    19. Falini, Jury, 2010. "Pricing caps with HJM models: The benefits of humped volatility," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1358-1367, December.
    20. Ingo Beyna, 2013. "Interest Rate Derivatives," Lecture Notes in Economics and Mathematical Systems, Springer, edition 127, number 978-3-642-34925-6, October.
    21. Lixin Wu, 2013. "Inflation-rate Derivatives: From Market Model to Foreign Currency Analogy," Papers 1302.0574, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:14:y:2014:i:11:p:1937-1959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.