IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v23y2016i5p374-408.html
   My bibliography  Save this article

Analysis of VIX Markets with a Time-Spread Portfolio

Author

Listed:
  • A. Papanicolaou

Abstract

This paper explores the relationship between option markets for the S&P500 (SPX) and Chicago Board Options Exchange’s CBOE’s Volatility Index (VIX). Results are obtained by using the so-called time-spread portfolio to replicate a future contract on the squared VIX. The time-spread portfolio is interesting because it provides a model-free link between derivative prices for SPX and VIX. Time spreads can be computed from SPX put options with different maturities, which results in a term structure for squared volatility. This term structure can be compared to the VIX-squared term structure that is backed-out from VIX call options. The time-spread portfolio is also used to measure volatility-of-volatility (vol-of-vol) and the volatility leverage effect. There may emerge small differences in these measurements, depending on whether time spreads are computed with options on SPX or options on VIX. A study of 2012 daily options data shows that vol-of-vol estimates utilizing SPX data will reflect the volatility leverage effect, whereas estimates that exclusively utilize VIX options will predominantly reflect the premia in the VIX-future term structure.

Suggested Citation

  • A. Papanicolaou, 2016. "Analysis of VIX Markets with a Time-Spread Portfolio," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(5), pages 374-408, September.
  • Handle: RePEc:taf:apmtfi:v:23:y:2016:i:5:p:374-408
    DOI: 10.1080/1350486X.2017.1290534
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1350486X.2017.1290534
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1350486X.2017.1290534?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jan Baldeaux & Alexander Badran, 2014. "Consistent Modelling of VIX and Equity Derivatives Using a 3/2 plus Jumps Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(4), pages 299-312, September.
    2. Peter Friz & Jim Gatheral, 2005. "Valuation of volatility derivatives as an inverse problem," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 531-542.
    3. Peter Carr & Roger Lee, 2010. "Hedging variance options on continuous semimartingales," Finance and Stochastics, Springer, vol. 14(2), pages 179-207, April.
    4. Christian Bayer & Jim Gatheral & Morten Karlsmark, 2013. "Fast Ninomiya--Victoir calibration of the double-mean-reverting model," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1813-1829, November.
    5. Rama Cont & Thomas Kokholm, 2013. "A Consistent Pricing Model For Index Options And Volatility Derivatives," Post-Print hal-00801536, HAL.
    6. Aït-Sahalia, Yacine & Fan, Jianqing & Li, Yingying, 2013. "The leverage effect puzzle: Disentangling sources of bias at high frequency," Journal of Financial Economics, Elsevier, vol. 109(1), pages 224-249.
    7. Gabriel G. Drimus, 2012. "Options on realized variance by transform methods: a non-affine stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1679-1694, November.
    8. Peter Carr & Roger Lee, 2009. "Volatility Derivatives," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 319-339, November.
    9. Peter Carr & Jian Sun, 2007. "A new approach for option pricing under stochastic volatility," Review of Derivatives Research, Springer, vol. 10(2), pages 87-150, May.
    10. repec:bla:jfinan:v:53:y:1998:i:6:p:2059-2106 is not listed on IDEAS
    11. Peter Carr & Liuren Wu, 2009. "Variance Risk Premiums," The Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 1311-1341, March.
    12. Jan Baldeaux & Alexander Badran, 2012. "Consistent Modeling of VIX and Equity Derivatives Using a 3/2 Plus Jumps Model," Research Paper Series 306, Quantitative Finance Research Centre, University of Technology, Sydney.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew Papanicolaou, 2021. "Extreme-Strike Comparisons and Structural Bounds for SPX and VIX Options," Papers 2101.00299, arXiv.org, revised Mar 2021.
    2. Andrew Papanicolaou, 2018. "Consistent Time-Homogeneous Modeling of SPX and VIX Derivatives," Papers 1812.05859, arXiv.org, revised Mar 2022.
    3. Andrew Papanicolaou, 2022. "Consistent time‐homogeneous modeling of SPX and VIX derivatives," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 907-940, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Papanicolaou, 2021. "Extreme-Strike Comparisons and Structural Bounds for SPX and VIX Options," Papers 2101.00299, arXiv.org, revised Mar 2021.
    2. Andrew Papanicolaou & Ronnie Sircar, 2014. "A regime-switching Heston model for VIX and S&P 500 implied volatilities," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1811-1827, October.
    3. Liexin Cheng & Xue Cheng & Xianhua Peng, 2024. "Joint Calibration to SPX and VIX Derivative Markets with Composite Change of Time Models," Papers 2404.16295, arXiv.org, revised Aug 2024.
    4. Andrea Barletta & Elisa Nicolato & Stefano Pagliarani, 2019. "The short‐time behavior of VIX‐implied volatilities in a multifactor stochastic volatility framework," Mathematical Finance, Wiley Blackwell, vol. 29(3), pages 928-966, July.
    5. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    6. Chi Hung Yuen & Wendong Zheng & Yue Kuen Kwok, 2015. "Pricing Exotic Discrete Variance Swaps under the 3/2-Stochastic Volatility Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(5), pages 421-449, November.
    7. Andrew Papanicolaou, 2018. "Consistent Time-Homogeneous Modeling of SPX and VIX Derivatives," Papers 1812.05859, arXiv.org, revised Mar 2022.
    8. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    9. Cao, Jiling & Kim, Jeong-Hoon & Liu, Wenqiang & Zhang, Wenjun, 2023. "Rescaling the double-mean-reverting 4/2 stochastic volatility model for derivative pricing," Finance Research Letters, Elsevier, vol. 58(PB).
    10. Stéphane Goutte & Amine Ismail & Huyên Pham, 2017. "Regime-switching stochastic volatility model: estimation and calibration to VIX options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 24(1), pages 38-75, January.
    11. Barletta, Andrea & Santucci de Magistris, Paolo & Violante, Francesco, 2019. "A non-structural investigation of VIX risk neutral density," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 1-20.
    12. Daniel Guterding, 2020. "Inventory effects on the price dynamics of VSTOXX futures quantified via machine learning," Papers 2002.08207, arXiv.org.
    13. Stéphane Goutte & Amine Ismail & Huyên Pham, 2017. "Regime-switching Stochastic Volatility Model : Estimation and Calibration to VIX options," Working Papers hal-01212018, HAL.
    14. Lian, Guanghua & Chiarella, Carl & Kalev, Petko S., 2014. "Volatility swaps and volatility options on discretely sampled realized variance," Journal of Economic Dynamics and Control, Elsevier, vol. 47(C), pages 239-262.
    15. Andrew Papanicolaou, 2022. "Consistent time‐homogeneous modeling of SPX and VIX derivatives," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 907-940, July.
    16. Wendong Zheng & Pingping Zeng, 2015. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Papers 1504.08136, arXiv.org.
    17. Wendong Zheng & Pingping Zeng, 2016. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(5), pages 344-373, September.
    18. Zhigang Tong, 2017. "Modelling VIX and VIX derivatives with reducible diffusions," International Journal of Bonds and Derivatives, Inderscience Enterprises Ltd, vol. 3(2), pages 153-175.
    19. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing, vol. 16(1), pages 27-48, January.
    20. Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "The quintic Ornstein-Uhlenbeck volatility model that jointly calibrates SPX & VIX smiles," Papers 2212.10917, arXiv.org, revised May 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:23:y:2016:i:5:p:374-408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.