IDEAS home Printed from https://ideas.repec.org/a/taf/apfiec/v14y2004i1p13-17.html
   My bibliography  Save this article

Diversification benefits in trading?

Author

Listed:
  • Raphael Markellos

Abstract

This study argues that there may exist benefits in active portfolio management and trading other than the possibility of obtaining excess returns. The objective is not to attack the hypothesis that trading cannot produce (risk-adjusted) returns that are superior to passive investment strategies. What is suggested is that the combination of active and passive strategies can help considerably in diversifying investment positions. An empirical application using large samples of daily data on the Dow Jones Industrial Average (DJIA) and the Financial Times Institute of Actuaries 30 (FT30) indexes shows that simple market timing techniques, such as those used by Brock et al. (Journal of Finance, 47, 1731-64, 1992), Mills (International Journal of Finance and Economics, 2, 319-31, 1997) and Markellos (Applied Economics Letters, 6, 177-79, 1999), can be combined with buy-and-hold strategies to match the market return at a fraction of market risk. In accordance with the studies by Mills and Markellos, it is found that the behaviour of the data appears to have changed in recent years.

Suggested Citation

  • Raphael Markellos, 2004. "Diversification benefits in trading?," Applied Financial Economics, Taylor & Francis Journals, vol. 14(1), pages 13-17.
  • Handle: RePEc:taf:apfiec:v:14:y:2004:i:1:p:13-17
    DOI: 10.1080/0960310042000164185
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/0960310042000164185
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0960310042000164185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raphael Markellos & Terence Mills, 2001. "Unit roots in the CAPM?," Applied Economics Letters, Taylor & Francis Journals, vol. 8(8), pages 499-502.
    2. Raphael Markellos, 1999. "Investment strategy evaluation with cointegration," Applied Economics Letters, Taylor & Francis Journals, vol. 6(3), pages 177-179.
    3. Mills, Terence C, 1997. "Technical Analysis and the London Stock Exchange: Testing Trading Rules Using the FT30," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 2(4), pages 319-331, October.
    4. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael McAleer & John Suen & Wing Keung Wong, 2016. "Profiteering from the Dot-Com Bubble, Subprime Crisis and Asian Financial Crisis," The Japanese Economic Review, Springer, vol. 67(3), pages 257-279, September.
    2. Alexandros E. Milionis & Evangelia Papanagiotou, 2008. "A Note on the Use of Moving Average Trading Rules to Test For Weak from Efficiency in Capital Markets," Working Papers 91, Bank of Greece.
    3. William Wai Him Tsang & Terence Tai Leung Chong, 2009. "Profitability of the On-Balance Volume Indicator," Economics Bulletin, AccessEcon, vol. 29(3), pages 2424-2431.
    4. Martín García, Rodrigo & Ventura Pérez, Enrique & Arguedas Sanz, Raquel, 2020. "Temporal optimisation of signals emitted automatically by securities exchange indicators," Cuadernos de Gestión, Universidad del País Vasco - Instituto de Economía Aplicada a la Empresa (IEAE).
    5. Alexandros E. Milionis & Evangelia Papanagiotou, 2013. "Decomposing the predictive performance of the moving average trading rule of technical analysis: the contribution of linear and non-linear dependencies in stock returns," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(11), pages 2480-2494, November.
    6. Tania Morris & Jules Comeau, 2020. "Portfolio creation using artificial neural networks and classification probabilities: a Canadian study," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(2), pages 133-163, June.
    7. R. Rosillo & D. de la Fuente & J. A. L. Brugos, 2013. "Technical analysis and the Spanish stock exchange: testing the RSI, MACD, momentum and stochastic rules using Spanish market companies," Applied Economics, Taylor & Francis Journals, vol. 45(12), pages 1541-1550, April.
    8. Fernando Fernández-Rodríguez & Christian González-Martel & Simón Sosvilla-Rivero, "undated". "Optimisation of Technical Rules by Genetic Algorithms: Evidence from the Madrid Stock Market," Working Papers 2001-14, FEDEA.
    9. Michael D. McKenzie, 2007. "Technical Trading Rules in Emerging Markets and the 1997 Asian Currency Crises," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 43(4), pages 46-73, August.
    10. J. Andrew Coutts, 2010. "Trading rules and stock returns: some further short run evidence from the Hang Seng 1997-2008," Applied Financial Economics, Taylor & Francis Journals, vol. 20(21), pages 1667-1672.
    11. repec:ebl:ecbull:v:7:y:2008:i:12:p:1-6 is not listed on IDEAS
    12. Terence Tai-Leung Chong & Chen Li & Ho Tin Yu, 2008. "Structural Change in the Stock Market Efficiency after the Millennium: The MACD Approach," Economics Bulletin, AccessEcon, vol. 7(12), pages 1-6.
    13. Terence Tai-Leung Chong & Wing-Kam Ng & Venus Khim-Sen Liew, 2014. "Revisiting the Performance of MACD and RSI Oscillators," JRFM, MDPI, vol. 7(1), pages 1-12, February.
    14. Senol Emir & Hasan Dincer & Umit Hacioglu & Serhat Yuksel, 2016. "Random Regression Forest Model using Technical Analysis Variables: An application on Turkish Banking Sector in Borsa Istanbul (BIST)," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 5(3), pages 85-102, April.
    15. Fong, Wai Mun & Yong, Lawrence H. M., 2005. "Chasing trends: recursive moving average trading rules and internet stocks," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 43-76, January.
    16. Chong, Terence Tai-Leung & Lam, Tau-Hing & Yan, Isabel Kit-Ming, 2012. "Is the Chinese stock market really inefficient?," China Economic Review, Elsevier, vol. 23(1), pages 122-137.
    17. Salma Khand & Vivake Anand & Mohammad Nadeem Qureshi, 2020. "The Predictability and Profitability of Simple Moving Averages and Trading Range Breakout Rules in the Pakistan Stock Market," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 23(01), pages 1-38, March.
    18. Alexandros E. Milionis & Evangelia Papanagiotou, 2008. "On the Use of the Moving Average Trading Rule to Test for Weak Form Efficiency in Capital Markets," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 37(2), pages 181-201, July.
    19. Ślepaczuk Robert & Sakowski Paweł & Zakrzewski Grzegorz, 2018. "Investment Strategies that Beat the Market. What Can We Squeeze from the Market?," Financial Internet Quarterly (formerly e-Finanse), Sciendo, vol. 14(4), pages 36-55, December.
    20. Alexandros Milionis & Evangelia Papanagiotou, 2009. "A study of the predictive performance of the moving average trading rule as applied to NYSE, the Athens Stock Exchange and the Vienna Stock Exchange: sensitivity analysis and implications for weak-for," Applied Financial Economics, Taylor & Francis Journals, vol. 19(14), pages 1171-1186.
    21. Raphael Markellos, 1999. "Investment strategy evaluation with cointegration," Applied Economics Letters, Taylor & Francis Journals, vol. 6(3), pages 177-179.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:14:y:2004:i:1:p:13-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAFE20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.