IDEAS home Printed from https://ideas.repec.org/a/taf/amstat/v70y2016i3p243-249.html
   My bibliography  Save this article

Data-Driven Confidence Interval Estimation Incorporating Prior Information with an Adjustment for Skewed Data

Author

Listed:
  • Albert Vexler
  • Li Zou
  • Alan D. Hutson

Abstract

Bayesian credible interval (CI) estimation is a statistical procedure that has been well addressed in both the theoretical and applied literature. Parametric assumptions regarding baseline data distributions are critical for the implementation of this method. We provide a nonparametric technique for incorporating prior information into the equal-tailed (ET) and highest posterior density (HPD) CI estimators in the Bayesian manner. We propose to use a data-driven likelihood function, replacing the parametric likelihood function to create a distribution-free posterior. Higher order asymptotic propositions are derived to show the efficiency and consistency of the proposed method. We demonstrate that the proposed approach may correct confidence regions with respect to skewness of the data distribution. An extensive Monte Carlo (MC) study confirms the proposed method significantly outperforms the classical CI estimation in a frequentist context. A real data example related to a study of myocardial infarction illustrates the excellent applicability of the proposed technique. Supplementary material, including the R code used to implement the developed method, is available online.

Suggested Citation

  • Albert Vexler & Li Zou & Alan D. Hutson, 2016. "Data-Driven Confidence Interval Estimation Incorporating Prior Information with an Adjustment for Skewed Data," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 243-249, July.
  • Handle: RePEc:taf:amstat:v:70:y:2016:i:3:p:243-249
    DOI: 10.1080/00031305.2016.1141707
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00031305.2016.1141707
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00031305.2016.1141707?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicole A. Lazar, 2003. "Bayesian empirical likelihood," Biometrika, Biometrika Trust, vol. 90(2), pages 319-326, June.
    2. A. Vexler & G. Tao & A. D. Hutson, 2014. "Posterior expectation based on empirical likelihoods," Biometrika, Biometrika Trust, vol. 101(3), pages 711-718.
    3. Zhou, Xiang & Reiter, Jerome P., 2010. "A Note on Bayesian Inference After Multiple Imputation," The American Statistician, American Statistical Association, vol. 64(2), pages 159-163.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vexler, Albert & Zou, Li & Hutson, Alan D., 2019. "The empirical likelihood prior applied to bias reduction of general estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 96-106.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vexler, Albert & Zou, Li & Hutson, Alan D., 2019. "The empirical likelihood prior applied to bias reduction of general estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 96-106.
    2. Vexler, Albert & Zou, Li, 2022. "Linear projections of joint symmetry and independence applied to exact testing treatment effects based on multidimensional outcomes," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    3. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    4. Kai Yang & Xue Ding & Xiaohui Yuan, 2022. "Bayesian empirical likelihood inference and order shrinkage for autoregressive models," Statistical Papers, Springer, vol. 63(1), pages 97-121, February.
    5. Sanjay Chaudhuri & Debashis Mondal & Teng Yin, 2017. "Hamiltonian Monte Carlo sampling in Bayesian empirical likelihood computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 293-320, January.
    6. Jaeger, Adam & Lazar, Nicole A., 2020. "Split sample empirical likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    7. Jean-Pierre Florens & Anna Simoni, 2021. "Gaussian Processes and Bayesian Moment Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 482-492, March.
    8. Zhichao Liu & Catherine Forbes & Heather Anderson, 2017. "Robust Bayesian exponentially tilted empirical likelihood method," Monash Econometrics and Business Statistics Working Papers 21/17, Monash University, Department of Econometrics and Business Statistics.
    9. Tanja Laukkala & Tom Rosenström & Anu Kantele, 2022. "A Two-Week Vacation in the Tropics and Psychological Well-Being—An Observational Follow-Up Study," IJERPH, MDPI, vol. 19(16), pages 1-9, August.
    10. Mike G. Tsionas, 2023. "Linex and double-linex regression for parameter estimation and forecasting," Annals of Operations Research, Springer, vol. 323(1), pages 229-245, April.
    11. Siddhartha Chib & Minchul Shin & Anna Simoni, 2022. "Bayesian estimation and comparison of conditional moment models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 740-764, July.
    12. Lane F. Burgette & Jerome P. Reiter, 2012. "Modeling Adverse Birth Outcomes via Confirmatory Factor Quantile Regression," Biometrics, The International Biometric Society, vol. 68(1), pages 92-100, March.
    13. Ventura, Laura & Racugno, Walter, 2012. "On interval and point estimators based on a penalization of the modified profile likelihood," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1285-1289.
    14. Adrian Rauchfleisch & Mike S Schäfer & Dario Siegen, 2021. "Beyond the ivory tower: Measuring and explaining academic engagement with journalists, politicians and industry representatives among Swiss professorss," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-20, May.
    15. Isaiah Andrews & Anna Mikusheva, 2022. "Optimal Decision Rules for Weak GMM," Econometrica, Econometric Society, vol. 90(2), pages 715-748, March.
    16. Xu, Ke-Li, 2020. "Inference of local regression in the presence of nuisance parameters," Journal of Econometrics, Elsevier, vol. 218(2), pages 532-560.
    17. Rong Tang & Yun Yang, 2022. "Bayesian inference for risk minimization via exponentially tilted empirical likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1257-1286, September.
    18. Rashid, S. & Mitra, R. & Steele, R.J., 2015. "Using mixtures of t densities to make inferences in the presence of missing data with a small number of multiply imputed data sets," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 84-96.
    19. Lehmann, Bruce N., 2009. "The role of beliefs in inference for rational expectations models," Journal of Econometrics, Elsevier, vol. 150(2), pages 322-331, June.
    20. In Chang & Rahul Mukerjee, 2012. "On the approximate frequentist validity of the posterior quantiles of a parametric function: results based on empirical and related likelihoods," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 156-169, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:amstat:v:70:y:2016:i:3:p:243-249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UTAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.