IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v101y2014i3p711-718..html
   My bibliography  Save this article

Posterior expectation based on empirical likelihoods

Author

Listed:
  • A. Vexler
  • G. Tao
  • A. D. Hutson

Abstract

Posterior expectation is widely used as a Bayesian point estimator. In this note we extend it from parametric models to nonparametric models using empirical likelihood, and develop a nonparametric analogue of James–Stein estimation. We use the Laplace method to establish asymptotic approximations to our proposed posterior expectations, and show by simulation that they are often more efficient than the corresponding classical nonparametric procedures, especially when the underlying data are skewed.

Suggested Citation

  • A. Vexler & G. Tao & A. D. Hutson, 2014. "Posterior expectation based on empirical likelihoods," Biometrika, Biometrika Trust, vol. 101(3), pages 711-718.
  • Handle: RePEc:oup:biomet:v:101:y:2014:i:3:p:711-718.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asu018
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vexler, Albert & Zou, Li, 2022. "Linear projections of joint symmetry and independence applied to exact testing treatment effects based on multidimensional outcomes," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    2. Albert Vexler & Li Zou & Alan D. Hutson, 2016. "Data-Driven Confidence Interval Estimation Incorporating Prior Information with an Adjustment for Skewed Data," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 243-249, July.
    3. Vexler, Albert & Zou, Li & Hutson, Alan D., 2019. "The empirical likelihood prior applied to bias reduction of general estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 96-106.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:101:y:2014:i:3:p:711-718.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.