IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i7p1285-1289.html
   My bibliography  Save this article

On interval and point estimators based on a penalization of the modified profile likelihood

Author

Listed:
  • Ventura, Laura
  • Racugno, Walter

Abstract

In the presence of a nuisance parameter, one widely shared approach to likelihood inference on a scalar parameter of interest is based on the profile likelihood and its various modifications. In this paper, we add a penalization to the modified profile likelihood, which is based on a suitable matching prior, and we discuss the frequency properties of interval estimators and point estimators based on this penalized modified profile likelihood. Two simulation studies are illustrated, and we indicate the improvement of the proposed penalized modified profile likelihood over its counterparts.

Suggested Citation

  • Ventura, Laura & Racugno, Walter, 2012. "On interval and point estimators based on a penalization of the modified profile likelihood," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1285-1289.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:7:p:1285-1289
    DOI: 10.1016/j.spl.2012.03.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212001186
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.03.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicole A. Lazar, 2003. "Bayesian empirical likelihood," Biometrika, Biometrika Trust, vol. 90(2), pages 319-326, June.
    2. Ventura, Laura & Cabras, Stefano & Racugno, Walter, 2009. "Prior Distributions From Pseudo-Likelihoods in the Presence of Nuisance Parameters," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 768-774.
    3. Chang, In Hong & Mukerjee, Rahul, 2006. "Probability matching property of adjusted likelihoods," Statistics & Probability Letters, Elsevier, vol. 76(8), pages 838-842, April.
    4. Thomas A. Severini, 2007. "Integrated likelihood functions for non-Bayesian inference," Biometrika, Biometrika Trust, vol. 94(3), pages 529-542.
    5. R. Mukerjee & N. Reid, 1999. "On confidence intervals associated with the usual and adjusted likelihoods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 945-953.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ventura, Laura & Cabras, Stefano & Racugno, Walter, 2009. "Prior Distributions From Pseudo-Likelihoods in the Presence of Nuisance Parameters," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 768-774.
    2. Rahul Mukerjee & Ling-Yau Chan, 2009. "Confidence intervals based on empirical statistics: existence of a probability matching prior and connection with frequentist Bartlett adjustability," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(2), pages 271-282, August.
    3. Sanjay Chaudhuri & Malay Ghosh, 2011. "Empirical likelihood for small area estimation," Biometrika, Biometrika Trust, vol. 98(2), pages 473-480.
    4. Giuliana Cortese & Nicola Sartori, 2016. "Integrated likelihoods in parametric survival models for highly clustered censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 382-404, July.
    5. repec:hum:wpaper:sfb649dp2013-028 is not listed on IDEAS
    6. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    7. Chang, In Hong & Mukerjee, Rahul, 2008. "Matching posterior and frequentist cumulative distribution functions with empirical-type likelihoods in the multiparameter case," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2793-2797, November.
    8. Kai Yang & Xue Ding & Xiaohui Yuan, 2022. "Bayesian empirical likelihood inference and order shrinkage for autoregressive models," Statistical Papers, Springer, vol. 63(1), pages 97-121, February.
    9. Sanjay Chaudhuri & Debashis Mondal & Teng Yin, 2017. "Hamiltonian Monte Carlo sampling in Bayesian empirical likelihood computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 293-320, January.
    10. Schumann, Martin & Severini, Thomas A. & Tripathi, Gautam, 2021. "Integrated likelihood based inference for nonlinear panel data models with unobserved effects," Journal of Econometrics, Elsevier, vol. 223(1), pages 73-95.
    11. Härdle, Wolfgang Karl & Huang, Li-shan, 2013. "Analysis of deviance in generalized partial linear models," SFB 649 Discussion Papers 2013-028, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Jaeger, Adam & Lazar, Nicole A., 2020. "Split sample empirical likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    13. Pakel, Cavit, 2019. "Bias reduction in nonlinear and dynamic panels in the presence of cross-section dependence," Journal of Econometrics, Elsevier, vol. 213(2), pages 459-492.
    14. Jean-Pierre Florens & Anna Simoni, 2021. "Gaussian Processes and Bayesian Moment Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 482-492, March.
    15. Zhichao Liu & Catherine Forbes & Heather Anderson, 2017. "Robust Bayesian exponentially tilted empirical likelihood method," Monash Econometrics and Business Statistics Working Papers 21/17, Monash University, Department of Econometrics and Business Statistics.
    16. Chang, In Hong & Mukerjee, Rahul, 2006. "Probability matching property of adjusted likelihoods," Statistics & Probability Letters, Elsevier, vol. 76(8), pages 838-842, April.
    17. V. Filimonov & G. Demos & D. Sornette, 2017. "Modified profile likelihood inference and interval forecast of the burst of financial bubbles," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1167-1186, August.
    18. Ventura, Laura & Sartori, Nicola & Racugno, Walter, 2013. "Objective Bayesian higher-order asymptotics in models with nuisance parameters," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 90-96.
    19. Vexler, Albert & Zou, Li & Hutson, Alan D., 2019. "The empirical likelihood prior applied to bias reduction of general estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 96-106.
    20. Ruggero Bellio & Annamaria Guolo, 2016. "Integrated Likelihood Inference in Small Sample Meta-analysis for Continuous Outcomes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 191-201, March.
    21. Mike G. Tsionas, 2023. "Linex and double-linex regression for parameter estimation and forecasting," Annals of Operations Research, Springer, vol. 323(1), pages 229-245, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:7:p:1285-1289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.