IDEAS home Printed from https://ideas.repec.org/a/taf/amstat/v66y2012i1p34-41.html
   My bibliography  Save this article

Estimating the Correlation in Bivariate Normal Data With Known Variances and Small Sample Sizes

Author

Listed:
  • Bailey K. Fosdick
  • Adrian E. Raftery

Abstract

We consider the problem of estimating the correlation in bivariate normal data when the means and variances are assumed known, with emphasis on the small sample case. We consider eight different estimators, several of them considered here for the first time in the literature. In a simulation study, we found that Bayesian estimators using the uniform and arc-sine priors outperformed several empirical and exact or approximate maximum likelihood estimators in small samples. The arc-sine prior did better for large values of the correlation. For testing whether the correlation is zero, we found that Bayesian hypothesis tests outperformed significance tests based on the empirical and exact or approximate maximum likelihood estimators considered in small samples, but that all tests performed similarly for sample size 50. These results lead us to suggest using the posterior mean with the arc-sine prior to estimate the correlation in small samples when the variances are assumed known.

Suggested Citation

  • Bailey K. Fosdick & Adrian E. Raftery, 2012. "Estimating the Correlation in Bivariate Normal Data With Known Variances and Small Sample Sizes," The American Statistician, Taylor & Francis Journals, vol. 66(1), pages 34-41, February.
  • Handle: RePEc:taf:amstat:v:66:y:2012:i:1:p:34-41
    DOI: 10.1080/00031305.2012.676329
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00031305.2012.676329
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00031305.2012.676329?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Press, S. James & Zellner, Arnold, 1978. "Posterior distribution for the multiple correlation coefficient with fixed regressors," Journal of Econometrics, Elsevier, vol. 8(3), pages 307-321, December.
    2. Leontine Alkema & Adrian Raftery & Patrick Gerland & Samuel Clark & François Pelletier & Thomas Buettner & Gerhard Heilig, 2011. "Probabilistic Projections of the Total Fertility Rate for All Countries," Demography, Springer;Population Association of America (PAA), vol. 48(3), pages 815-839, August.
    3. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    4. John Carroll, 1961. "The nature of the data, or how to choose a correlation coefficient," Psychometrika, Springer;The Psychometric Society, vol. 26(4), pages 347-372, December.
    5. John C. Liechty, 2004. "Bayesian correlation estimation," Biometrika, Biometrika Trust, vol. 91(1), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bailey Fosdick & Adrian E. Raftery, 2014. "Regional probabilistic fertility forecasting by modeling between-country correlations," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(35), pages 1011-1034.
    2. Paul Kabaila & A. H. Welsh, 2024. "The concept of sufficiency in conditional frequentist inference," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 78(3), pages 544-562, August.
    3. Fosdick, Bailey K. & Perlman, Michael D., 2013. "Covariate and Newton–Raphson adjustments for a normal correlation coefficient when the variances are known," Statistics & Probability Letters, Elsevier, vol. 83(12), pages 2627-2633.
    4. Jarjour, Riad & Chan, Kung-Sik, 2020. "Dynamic conditional angular correlation," Journal of Econometrics, Elsevier, vol. 216(1), pages 137-150.
    5. Alan D. Hutson & Gregory E. Wilding & Terry L. Mashtare & Albert Vexler, 2015. "Measures of biomarker dependence using a copula-based multivariate epsilon-skew-normal family of distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(12), pages 2734-2753, December.
    6. Veronese, Piero & Melilli, Eugenio, 2018. "Some asymptotic results for fiducial and confidence distributions," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 98-105.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dickens, Richard & Machin, Stephen & Manning, Alan, 1998. "Estimating the effect of minimum wages on employment from the distribution of wages: A critical view," Labour Economics, Elsevier, vol. 5(2), pages 109-134, June.
    2. Meya, Jasper N. & Drupp, Moritz A. & Hanley, Nick, 2021. "Testing structural benefit transfer: The role of income inequality," Resource and Energy Economics, Elsevier, vol. 64(C).
    3. Abbring, Jaap H. & van den Berg, Gerard J., 2003. "A Simple Procedure for the Evaluation of Treatment Effects on Duration Variables," IZA Discussion Papers 810, Institute of Labor Economics (IZA).
    4. van den Berg, Gerard J., 2007. "On the uniqueness of optimal prices set by monopolistic sellers," Journal of Econometrics, Elsevier, vol. 141(2), pages 482-491, December.
    5. Mathias Silva, 2023. "Parametric models of income distributions integrating misreporting and non-response mechanisms," AMSE Working Papers 2311, Aix-Marseille School of Economics, France.
    6. Hajargasht, Gholamreza & Griffiths, William E., 2013. "Pareto–lognormal distributions: Inequality, poverty, and estimation from grouped income data," Economic Modelling, Elsevier, vol. 33(C), pages 593-604.
    7. Saissi Hassani, Samir & Dionne, Georges, 2021. "The New International Regulation of Market Risk: Roles of VaR and CVaR in Model Validation," Working Papers 21-1, HEC Montreal, Canada Research Chair in Risk Management.
    8. Puente-Ajovin, Miguel & Ramos, Arturo, 2015. "An improvement over the normal distribution for log-growth rates of city sizes: Empirical evidence for France, Germany, Italy and Spain," MPRA Paper 67471, University Library of Munich, Germany.
    9. Camelia Minoiu & Sanjay Reddy, 2014. "Kernel density estimation on grouped data: the case of poverty assessment," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 12(2), pages 163-189, June.
    10. Dmitry I. Malakhov & Nikolay P. Pilnik & Igor G. Pospelov, 2015. "Stability of Distribution of Relative Sizes of Banks as an Argument for the Use of the Representative Agent Concept," HSE Working papers WP BRP 116/EC/2015, National Research University Higher School of Economics.
    11. Alexey Kudryavtsev & Oleg Shestakov, 2023. "Estimates of the Convergence Rate in the Generalized Rényi Theorem with a Structural Digamma Distribution Using Zeta Metrics," Mathematics, MDPI, vol. 11(21), pages 1-10, October.
    12. Masato Okamoto, 2014. "Interpolating the Lorenz Curve: Methods to Preserve Shape and Remain Consistent with the Concentration Curves for Components," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(2), pages 349-384, June.
    13. Peter Grösche & Carsten Schröder, 2014. "On the redistributive effects of Germany’s feed-in tariff," Empirical Economics, Springer, vol. 46(4), pages 1339-1383, June.
    14. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    15. Alexander, Carol & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Sarabia, José María, 2012. "Generalized beta-generated distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1880-1897.
    16. Belzunce, Félix & Pinar, José F. & Ruiz, José M. & Sordo, Miguel A., 2013. "Comparison of concentration for several families of income distributions," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1036-1045.
    17. Satya Paul & Sriram Shankar, 2020. "An alternative single parameter functional form for Lorenz curve," Empirical Economics, Springer, vol. 59(3), pages 1393-1402, September.
    18. Cowell, Frank A. & Flachaire, Emmanuel, 2007. "Income distribution and inequality measurement: The problem of extreme values," Journal of Econometrics, Elsevier, vol. 141(2), pages 1044-1072, December.
    19. Dorothée Boccanfuso & Bernard Decaluwé & Luc Savard, 2008. "Poverty, income distribution and CGE micro-simulation modeling: Does the functional form of distribution matter?," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 6(2), pages 149-184, June.
    20. Markus P. A. Schneider, 2013. "Race & Gender Differences in the Experience of Earnings Inequality in the US from 1995 to 2010," Working Papers 1303, New School for Social Research, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:amstat:v:66:y:2012:i:1:p:34-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UTAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.