IDEAS home Printed from https://ideas.repec.org/a/spt/stecon/v7y2018i2f7_2_1.html
   My bibliography  Save this article

Modelling of Nigeria gross domestic product using seasonal and bilinear autoregressive integrated moving average models

Author

Listed:
  • Anthony E. Usoro

Abstract

This paper compares Seasonal Autoregressive Integrated Moving Average Model with Bilinear Autoregressive Integrated Moving Average Model in the analysis of Nigeria Gross Domestic Product. The analysis makes use of quarterly data (Table 7) of Nigeria Gross Domestic Product at 1990 Constant Basic Prices from first quarter 1993 to fourth quarter 2012, Statistical Bulletin (p. 144-148, 2012). SARIMA (0,1,2)(0,1,1)4 and BARIMA (0,2,1,0,1) Models were fitted to original GDP and seasonally adjusted data, and the results do not change the values of the parameter estimates from both series. The autocorrelation functions in Figures 7 & 8 describe pure white noise process for the residual values of the two models. Furthermore, Ljung Box Chi-Square test Statistic confirms non-existence of autocorrelations in the residual values, while Analysis of Variance test suggests overall fitness of the Bilinear Regression Model. The Akaike Information Criterion shows a better performance of BARIMA model than SARIMA model in fitting Nigeria Gross Domestic Product (NGDP). The estimates from the two models compare favourably with the actual values of the Nigeria Gross Domestic Product (see Figures 9, 10). This paper recommends Bilinear Autoregressive Moving Average Model as a class of non-linear model for modelling Nigeria Gross Domestic Product.Mathematics Subject Classification: 62K05Keywords: Gross Domestic Product; Autocorrelation Function; Partial Autocorrelation Function; SARIMA model; BARIMA Model and Trend Analysis

Suggested Citation

  • Anthony E. Usoro, 2018. "Modelling of Nigeria gross domestic product using seasonal and bilinear autoregressive integrated moving average models," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 7(2), pages 1-1.
  • Handle: RePEc:spt:stecon:v:7:y:2018:i:2:f:7_2_1
    as

    Download full text from publisher

    File URL: http://www.scienpress.com/Upload/JSEM%2fVol%207_2_1.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maravall, Agustin, 1983. "An Application of Nonlinear Time Series Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(1), pages 66-74, January.
    2. Ette Harrison Etuk, 2012. "A Seasonal Arima Model for Daily Nigerian Naira-Us Dollar Exchange Rates," Asian Journal of Empirical Research, Asian Economic and Social Society, vol. 2(6), pages 219-227, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zacharias Psaradakis & Marián Vávra, 2019. "Portmanteau tests for linearity of stationary time series," Econometric Reviews, Taylor & Francis Journals, vol. 38(2), pages 248-262, February.
    2. Rossen Anja, 2016. "On the Predictive Content of Nonlinear Transformations of Lagged Autoregression Residuals and Time Series Observations," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 236(3), pages 389-409, May.
    3. Nwokike Chukwudike C. & Ugoala & Chukwuma B. & Obubu Maxwell & Uche-Ikonne Okezie O. & Offorha Bright C. & Ukomah Henry I., 2020. "Forecasting Monthly Prices of Gold Using Artificial Neural Network," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 9(3), pages 1-2.
    4. Brunner, Allan D. & Hess, Gregory D., 1995. "Potential problems in estimating bilinear time-series models," Journal of Economic Dynamics and Control, Elsevier, vol. 19(4), pages 663-681, May.
    5. repec:asi:ajoerj:2013:p:711-724 is not listed on IDEAS
    6. Franses, P. H., 1990. "Seasonality, Outliers And Linearity," Econometric Institute Archives 272395, Erasmus University Rotterdam.
    7. Wilfredo Palma & Mauricio Zevallos, 2004. "Analysis of the correlation structure of square time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(4), pages 529-550, July.
    8. Pellegrini, Santiago & Ruiz, Esther & Espasa, Antoni, 2010. "Conditionally heteroscedastic unobserved component models and their reduced form," Economics Letters, Elsevier, vol. 107(2), pages 88-90, May.
    9. Liu, Yamei, 2000. "Overfitting and forecasting: linear versus non-linear time series models," ISU General Staff Papers 2000010108000014914, Iowa State University, Department of Economics.
    10. Peña, Daniel, 2020. "Agustín Maravall: An interview with the International Journal of Forecasting," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1241-1251.
    11. Broto, Carmen & Ruiz, Esther, 2006. "Unobserved component models with asymmetric conditional variances," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2146-2166, May.
    12. Daniela Hristova, 2004. "Maximum Likelihood Estimation of a Unit Root Bilinear Model with an Application to Prices," Computing in Economics and Finance 2004 47, Society for Computational Economics.
    13. Pena, Daniel & Rodriguez, Julio, 2005. "Detecting nonlinearity in time series by model selection criteria," International Journal of Forecasting, Elsevier, vol. 21(4), pages 731-748.
    14. Pena D. & Rodriguez J., 2002. "A Powerful Portmanteau Test of Lack of Fit for Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 601-610, June.
    15. Anders Bredahl Kock & Timo Teräsvirta, 2010. "Forecasting with nonlinear time series models," CREATES Research Papers 2010-01, Department of Economics and Business Economics, Aarhus University.
    16. Mike Kraehenbuehl & Joerg Osterrieder, 2022. "The Efficient Market Hypothesis for Bitcoin in the context of neural networks," Papers 2208.07254, arXiv.org.
    17. Brockett, Patrick L. & Witt, Robert C. & Golany, Boaz & Sipra, Naim & Xia, Xiaohua, 1996. "Statistical tests of stochastic process models used in the financial theory of insurance companies," Insurance: Mathematics and Economics, Elsevier, vol. 18(1), pages 73-79, May.
    18. Philip Rothman, "undated". "Higher-Order Residual Analysis for Simple Bilinear and Threshold Autoregressive Models with the TR Test," Working Papers 9813, East Carolina University, Department of Economics.
    19. Sánchez, Ismael, 2009. "Graphical identification of TAR models," DES - Working Papers. Statistics and Econometrics. WS ws097723, Universidad Carlos III de Madrid. Departamento de Estadística.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spt:stecon:v:7:y:2018:i:2:f:7_2_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Eleftherios Spyromitros-Xioufis (email available below). General contact details of provider: http://www.scienpress.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.