IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i1d10.1007_s11269-023-03653-3.html
   My bibliography  Save this article

River Flash Flood Economical Loss and its Uncertainty in Developing Countries

Author

Listed:
  • Kimiya Amirmoradi

    (Imam Khomeini International University)

  • Alireza Shokoohi

    (Imam Khomeini International University)

Abstract

Namely: Floods can inflict significant damage on buildings, particularly in urban areas. Effective flood risk management in such areas relies on the ability to identify potential damages and high-risk locations. In the twenty-first century, this issue has become even more critical due to the rapid urbanization process and the intensification of short-term rainstorms and flash floods caused by climate change. Unfortunately, many developing countries lack accurate models for predicting and estimating flood damages at a national level. This article focuses on assessing the direct damages incurred by floods on buildings and their contents in urban areas, especially in regions with limited field data and unreliable damage functions. Five different models, including Life-Sim, Debo (J Hydraul Div Proc ASCE 108(10):1059–1069, 1982), Dutta et al. (J Hydrol 277:24–49, 2003), Luino et al. (J Geoinformatica 13:339–353, 2009), and Arrighi et al. (J Nat Hazards Earth Syst Sci 13:1375–1391, 2013), are discussed concerning building instability (or destruction) and percentage of damage to remaining buildings based on flood hydraulic characteristics such as depth and flow velocity. The economic damages caused by floods of varying return periods, representing the average long-term risk and expected annual damage (EAD), are examined for buildings in a specific region in Iran using the depth-damage functions from the aforementioned models. Moreover, the first-order variance estimation method (FOVE) is utilized to determine the confidence interval around the EAD, considering the challenge of defining probability density functions for damage across all cells in the basic. The depth-damage curve presented by Arrighi et al. (J Nat Hazards Earth Syst Sci 13:1375–1391, 2013) yields the most accurate estimation when compared to observed flood data on economic losses. An important finding of this research is the potential applicability of functions developed in other countries, despite differences in culture, architecture, and urban infrastructure. The method proposed in this article allows for a rapid estimate of flood damages in the absence of information and historical data, providing an acceptable approximation. Additionally, this research investigates the existence of uncertainty in estimating the expected annual damage, and raster maps.

Suggested Citation

  • Kimiya Amirmoradi & Alireza Shokoohi, 2024. "River Flash Flood Economical Loss and its Uncertainty in Developing Countries," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 81-105, January.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:1:d:10.1007_s11269-023-03653-3
    DOI: 10.1007/s11269-023-03653-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03653-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03653-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abhas K. Jha & Robin Bloch & Jessica Lamond, . "Cities and Flooding : A Guide to Integrated Urban Flood Risk Management for the 21st Century [Ciudades e Inundaciones : guía para la gestión integrada del riesgo de inundaciones en ciudades en el S," World Bank Publications, The World Bank, number 2241, September.
    2. Morteza T. Marvi, 2020. "A review of flood damage analysis for a building structure and contents," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 967-995, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiayu Ding & Yuewei Wang & Chaoyue Li, 2024. "A Dual-Layer Complex Network-Based Quantitative Flood Vulnerability Assessment Method of Transportation Systems," Land, MDPI, vol. 13(6), pages 1-27, May.
    2. Adriana Kocornik-Mina & Thomas K. J. McDermott & Guy Michaels & Ferdinand Rauch, 2020. "Flooded Cities," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 35-66, April.
    3. Abdelmonaim Okacha & Adil Salhi & Kamal Abdelrahman & Hamid Fattasse & Kamal Lahrichi & Kaoutar Bakhouya & Biraj Kanti Mondal, 2024. "Balancing Environmental and Human Needs: Geographic Information System-Based Analytical Hierarchy Process Land Suitability Planning for Emerging Urban Areas in Bni Bouayach Amid Urban Transformation," Sustainability, MDPI, vol. 16(15), pages 1-24, July.
    4. Somayeh Ahmadi & Rezvan Ghanbari Movahed & Saeed Gholamrezaie & Mehdi Rahimian, 2022. "Assessing the Vulnerability of Rural Households to Floods at Pol-e Dokhtar Region in Iran," Sustainability, MDPI, vol. 14(2), pages 1-17, January.
    5. José Armando Cobián Álvarez & Budy P. Resosudarmo, 2019. "The cost of floods in developing countries’ megacities: a hedonic price analysis of the Jakarta housing market, Indonesia," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(4), pages 555-577, October.
    6. Jose Cobian & Budy P. Resosudarmo & Alin Halimatussadiah & Susan Olivia, 2022. "Demand for index-based flood insurance in Jakarta, Indonesia," Departmental Working Papers 2022-12, The Australian National University, Arndt-Corden Department of Economics.
    7. Ibidun Adelekan & Adeniyi Asiyanbi, 2016. "Flood risk perception in flood-affected communities in Lagos, Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 445-469, January.
    8. Rotimi Joseph & David Proverbs & Jessica Lamond, 2015. "Assessing the value of intangible benefits of property level flood risk adaptation (PLFRA) measures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1275-1297, November.
    9. Katy Cornwell & Titik Anas, 2013. "Survey of recent developments," Bulletin of Indonesian Economic Studies, Taylor & Francis Journals, vol. 49(1), pages 7-33, April.
    10. Md. Nawrose Fatemi & Seth Asare Okyere & Stephen Kofi Diko & Michihiro Kita & Motoki Shimoda & Shigeki Matsubara, 2020. "Physical Vulnerability and Local Responses to Flood Damage in Peri-Urban Areas of Dhaka, Bangladesh," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    11. Gabriel Spreitzer & Diego Ravazzolo & Jon Tunnicliffe & Heide Friedrich, 2022. "Measuring the impact: new insights into flood-borne large wood collisions with river structures using an isolated sensor-unit," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1495-1517, September.
    12. Deborah Balk & Mark R. Montgomery & Hasim Engin & Natalie Lin & Elizabeth Major & Bryan Jones, 2019. "Urbanization in India: Population and Urban Classification Grids for 2011," Data, MDPI, vol. 4(1), pages 1-16, February.
    13. Ashu Tiwari & Archana Patro, 2018. "Memory, Risk Aversion, and Nonlife Insurance Consumption: Evidence from Emerging and Developing Markets," Risks, MDPI, vol. 6(4), pages 1-17, December.
    14. Edna M. Rodríguez-Gaviria & Sol Ochoa-Osorio & Alejandro Builes-Jaramillo & Verónica Botero-Fernández, 2019. "Computational Bottom-Up Vulnerability Indicator for Low-Income Flood-Prone Urban Areas," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    15. Kristian Saguin, 2017. "Producing an urban hazardscape beyond the city," Environment and Planning A, , vol. 49(9), pages 1968-1985, September.
    16. Rocco Custer & Kazuyoshi Nishijima, 2015. "Flood vulnerability assessment of residential buildings by explicit damage process modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 461-496, August.
    17. Oluwatofunmi Deborah Aribisala & Sang-Guk Yum & Manik Das Adhikari & Moon-Soo Song, 2022. "Flood Damage Assessment: A Review of Microscale Methodologies for Residential Buildings," Sustainability, MDPI, vol. 14(21), pages 1-24, October.
    18. Bikram Manandhar & Shenghui Cui & Lihong Wang & Sabita Shrestha, 2023. "Urban Flood Hazard Assessment and Management Practices in South Asia: A Review," Land, MDPI, vol. 12(3), pages 1-29, March.
    19. Morteza Tavanaie Marvi & Daniël Linders, 2021. "Decomposition of Natural Catastrophe Risks: Insurability Using Parametric CAT Bonds," Risks, MDPI, vol. 9(12), pages 1-19, December.
    20. Mark Stevens & Steve Hanschka, 2014. "Municipal flood hazard mapping: the case of British Columbia, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 907-932, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:1:d:10.1007_s11269-023-03653-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.