Floodplain Lake Water Level Prediction with Strong River-Lake Interaction Using the Ensemble Learning LightGBM
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-024-03915-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- R. Sarma & S. K. Singh, 2022. "A Comparative Study of Data-driven Models for Groundwater Level Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2741-2756, June.
- Xinxin He & Jungang Luo & Peng Li & Ganggang Zuo & Jiancang Xie, 2020. "A Hybrid Model Based on Variational Mode Decomposition and Gradient Boosting Regression Tree for Monthly Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 865-884, January.
- Jalal Shiri & Shahaboddin Shamshirband & Ozgur Kisi & Sepideh Karimi & Seyyed M Bateni & Seyed Hossein Hosseini Nezhad & Arsalan Hashemi, 2016. "Prediction of Water-Level in the Urmia Lake Using the Extreme Learning Machine Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5217-5229, November.
- Fan, Junliang & Ma, Xin & Wu, Lifeng & Zhang, Fucang & Yu, Xiang & Zeng, Wenzhi, 2019. "Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data," Agricultural Water Management, Elsevier, vol. 225(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yamashiro, Hirochika & Nonaka, Hirofumi, 2021. "Estimation of processing time using machine learning and real factory data for optimization of parallel machine scheduling problem," Operations Research Perspectives, Elsevier, vol. 8(C).
- Ook Lee & Hanseon Joo & Hayoung Choi & Minjong Cheon, 2022. "Proposing an Integrated Approach to Analyzing ESG Data via Machine Learning and Deep Learning Algorithms," Sustainability, MDPI, vol. 14(14), pages 1-14, July.
- Lili Wang & Yanlong Guo & Manhong Fan, 2022. "Improving Annual Streamflow Prediction by Extracting Information from High-frequency Components of Streamflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4535-4555, September.
- Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "A review of deep learning and machine learning techniques for hydrological inflow forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12189-12216, November.
- Esangbedo, Moses Olabhele & Taiwo, Blessing Olamide & Abbas, Hawraa H. & Hosseini, Shahab & Sazid, Mohammed & Fissha, Yewuhalashet, 2024. "Enhancing the exploitation of natural resources for green energy: An application of LSTM-based meta-model for aluminum prices forecasting," Resources Policy, Elsevier, vol. 92(C).
- Yamaç, Sevim Seda, 2021. "Artificial intelligence methods reliably predict crop evapotranspiration with different combinations of meteorological data for sugar beet in a semiarid area," Agricultural Water Management, Elsevier, vol. 254(C).
- Balati Maihemuti & Tayierjiang Aishan & Zibibula Simayi & Yilinuer Alifujiang & Shengtian Yang, 2020. "Temporal Scaling of Water Level Fluctuations in Shallow Lakes and Its Impacts on the Lake Eco-Environments," Sustainability, MDPI, vol. 12(9), pages 1-14, April.
- Vijendra Kumar & Naresh Kedam & Kul Vaibhav Sharma & Khaled Mohamed Khedher & Ayed Eid Alluqmani, 2023. "A Comparison of Machine Learning Models for Predicting Rainfall in Urban Metropolitan Cities," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
- Wu, Lifeng & Peng, Youwen & Fan, Junliang & Wang, Yicheng & Huang, Guomin, 2021. "A novel kernel extreme learning machine model coupled with K-means clustering and firefly algorithm for estimating monthly reference evapotranspiration in parallel computation," Agricultural Water Management, Elsevier, vol. 245(C).
- Tianao Wu & Wei Zhang & Xiyun Jiao & Weihua Guo & Yousef Alhaj Hamoud, 2020. "Comparison of five Boosting-based models for estimating daily reference evapotranspiration with limited meteorological variables," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-28, June.
- Yan, Shicheng & Wu, Lifeng & Fan, Junliang & Zhang, Fucang & Zou, Yufeng & Wu, You, 2021. "A novel hybrid WOA-XGB model for estimating daily reference evapotranspiration using local and external meteorological data: Applications in arid and humid regions of China," Agricultural Water Management, Elsevier, vol. 244(C).
- Yawei Qin & Yongjin Lei & Xiangyu Gong & Wanglai Ju, 2022. "A model involving meteorological factors for short- to medium-term, water-level predictions of small- and medium-sized urban rivers," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 725-739, March.
- Ali Asghar Heidari & Mehdi Akhoondzadeh & Huiling Chen, 2022. "A Wavelet PM2.5 Prediction System Using Optimized Kernel Extreme Learning with Boruta-XGBoost Feature Selection," Mathematics, MDPI, vol. 10(19), pages 1-35, September.
- Houndekindo, Freddy & Ouarda, Taha B.M.J., 2024. "Prediction of hourly wind speed time series at unsampled locations using machine learning," Energy, Elsevier, vol. 299(C).
- Jayashree T R & NV Subba Reddy & U Dinesh Acharya, 2023. "Modeling Daily Reference Evapotranspiration from Climate Variables: Assessment of Bagging and Boosting Regression Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1013-1032, February.
- Wang, Jujie & Cui, Quan & He, Maolin, 2022. "Hybrid intelligent framework for carbon price prediction using improved variational mode decomposition and optimal extreme learning machine," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
- Mohamed Chaibi & EL Mahjoub Benghoulam & Lhoussaine Tarik & Mohamed Berrada & Abdellah El Hmaidi, 2021. "An Interpretable Machine Learning Model for Daily Global Solar Radiation Prediction," Energies, MDPI, vol. 14(21), pages 1-19, November.
- Ali Mokhtar & Nadhir Al-Ansari & Wessam El-Ssawy & Renata Graf & Pouya Aghelpour & Hongming He & Salma M. Hafez & Mohamed Abuarab, 2023. "Prediction of Irrigation Water Requirements for Green Beans-Based Machine Learning Algorithm Models in Arid Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1557-1580, March.
- Zheng, Jing & Fan, Junliang & Zhang, Fucang & Wu, Lifeng & Zou, Yufeng & Zhuang, Qianlai, 2021. "Estimation of rainfed maize transpiration under various mulching methods using modified Jarvis-Stewart model and hybrid support vector machine model with whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 249(C).
- Huseyin Cagan Kilinc & Iman Ahmadianfar & Vahdettin Demir & Salim Heddam & Ahmed M. Al-Areeq & Sani I. Abba & Mou Leong Tan & Bijay Halder & Haydar Abdulameer Marhoon & Zaher Mundher Yaseen, 2023. "Daily Scale River Flow Forecasting Using Hybrid Gradient Boosting Model with Genetic Algorithm Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3699-3714, July.
More about this item
Keywords
Ensemble learning; Floodplain; LightGBM; Poyang Lake; Water level prediction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:13:d:10.1007_s11269-024-03915-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.