IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i12d10.1007_s11269-019-02356-y.html
   My bibliography  Save this article

Advancing Freshwater Lake Level Forecast Using King’s Castle Optimization with Training Sample Adaption and Adaptive Neuro-Fuzzy Inference System

Author

Listed:
  • Amir Hossein Zaji

    (Razi University)

  • Hossein Bonakdari

    (Razi University
    University of Guelph)

  • Bahram Gharabaghi

    (University of Guelph)

Abstract

This study presents a novel method for more accurate forecasting freshwater Lake Levels with complex fluctuation patterns due to multiple anthropogenic demands and climate factors. The new method employs the mighty King’s Castle Optimization (KCO) with Training Sample Adaption (TSA) and Adaptive Neuro-Fuzzy Inference System (ANFIS) to develop a novel hybrid KCO-TSA-ANFIS model. The performance of the new KCO-TSA-ANFIS Lake water level forecast model is tested on the monthly water levels of Lake Van, in Turkey, showing significantly improved accuracy in model forecasts compared with the regular ANFIS model. By comparing the Root Mean Square Error (RMSE) results, it can be concluded that the KCO-TSA-ANFIS method has 71% higher performance than the simple ANFIS method.

Suggested Citation

  • Amir Hossein Zaji & Hossein Bonakdari & Bahram Gharabaghi, 2019. "Advancing Freshwater Lake Level Forecast Using King’s Castle Optimization with Training Sample Adaption and Adaptive Neuro-Fuzzy Inference System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4215-4230, September.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:12:d:10.1007_s11269-019-02356-y
    DOI: 10.1007/s11269-019-02356-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02356-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02356-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Veysel Güldal & Hakan Tongal, 2010. "Comparison of Recurrent Neural Network, Adaptive Neuro-Fuzzy Inference System and Stochastic Models in Eğirdir Lake Level Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 105-128, January.
    2. Jalal Shiri & Shahaboddin Shamshirband & Ozgur Kisi & Sepideh Karimi & Seyyed M Bateni & Seyed Hossein Hosseini Nezhad & Arsalan Hashemi, 2016. "Prediction of Water-Level in the Urmia Lake Using the Extreme Learning Machine Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5217-5229, November.
    3. Maryam Shafaei & Ozgur Kisi, 2016. "Lake Level Forecasting Using Wavelet-SVR, Wavelet-ANFIS and Wavelet-ARMA Conjunction Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 79-97, January.
    4. Hamid Moeeni & Hossein Bonakdari & Isa Ebtehaj, 2017. "Integrated SARIMA with Neuro-Fuzzy Systems and Neural Networks for Monthly Inflow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2141-2156, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossein Bonakdari & Isa Ebtehaj & Pijush Samui & Bahram Gharabaghi, 2019. "Lake Water-Level fluctuations forecasting using Minimax Probability Machine Regression, Relevance Vector Machine, Gaussian Process Regression, and Extreme Learning Machine," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3965-3984, September.
    2. Hadi Sanikhani & Ozgur Kisi, 2012. "River Flow Estimation and Forecasting by Using Two Different Adaptive Neuro-Fuzzy Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1715-1729, April.
    3. Balati Maihemuti & Tayierjiang Aishan & Zibibula Simayi & Yilinuer Alifujiang & Shengtian Yang, 2020. "Temporal Scaling of Water Level Fluctuations in Shallow Lakes and Its Impacts on the Lake Eco-Environments," Sustainability, MDPI, vol. 12(9), pages 1-14, April.
    4. Siriporn Supratid & Thannob Aribarg & Seree Supharatid, 2017. "An Integration of Stationary Wavelet Transform and Nonlinear Autoregressive Neural Network with Exogenous Input for Baseline and Future Forecasting of Reservoir Inflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 4023-4043, September.
    5. Fei Wang & Yinxi Liang & Zhizhe Lin & Jinglin Zhou & Teng Zhou, 2024. "SSA-ELM: A Hybrid Learning Model for Short-Term Traffic Flow Forecasting," Mathematics, MDPI, vol. 12(12), pages 1-17, June.
    6. Mingxiang Yang & Hao Wang & Yunzhong Jiang & Xing Lu & Zhao Xu & Guangdong Sun, 2020. "GECA Proposed Ensemble–KNN Method for Improved Monthly Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 849-863, January.
    7. Andres Ticlavilca & Mac McKee, 2011. "Multivariate Bayesian Regression Approach to Forecast Releases from a System of Multiple Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 523-543, January.
    8. Xike Zhang & Qiuwen Zhang & Gui Zhang & Zhiping Nie & Zifan Gui & Huafei Que, 2018. "A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition," IJERPH, MDPI, vol. 15(5), pages 1-23, May.
    9. Pratik Pathak & Ajay Kalra & Sajjad Ahmad & Miguel Bernardez, 2016. "Wavelet-Aided Analysis to Estimate Seasonal Variability and Dominant Periodicities in Temperature, Precipitation, and Streamflow in the Midwestern United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4649-4665, October.
    10. Meral Buyukyildiz & Gulay Tezel & Volkan Yilmaz, 2014. "Estimation of the Change in Lake Water Level by Artificial Intelligence Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4747-4763, October.
    11. Xuesong Zhang & Kaiguang Zhao, 2012. "Bayesian Neural Networks for Uncertainty Analysis of Hydrologic Modeling: A Comparison of Two Schemes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2365-2382, June.
    12. Yawei Qin & Yongjin Lei & Xiangyu Gong & Wanglai Ju, 2022. "A model involving meteorological factors for short- to medium-term, water-level predictions of small- and medium-sized urban rivers," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 725-739, March.
    13. Jinping Zhang & Honglin Xiao & Hongyuan Fang, 2022. "Component-based Reconstruction Prediction of Runoff at Multi-time Scales in the Source Area of the Yellow River Based on the ARMA Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 433-448, January.
    14. Salvatore Campisi-Pinto & Jan Adamowski & Gideon Oron, 2012. "Forecasting Urban Water Demand Via Wavelet-Denoising and Neural Network Models. Case Study: City of Syracuse, Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3539-3558, September.
    15. Vahid Moosavi & Ali Talebi & Mohammad Reza Hadian, 2017. "Development of a Hybrid Wavelet Packet- Group Method of Data Handling (WPGMDH) Model for Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 43-59, January.
    16. P. Biglarbeigi & W. A. Strong & D. Finlay & R. McDermott & P. Griffiths, 2020. "A Hybrid Model-Based Adaptive Framework for the Analysis of Climate Change Impact on Reservoir Performance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4053-4066, October.
    17. Isa Ebtehaj & Keyvan Soltani & Afshin Amiri & Marzban Faramarzi & Chandra A. Madramootoo & Hossein Bonakdari, 2021. "Prognostication of Shortwave Radiation Using an Improved No-Tuned Fast Machine Learning," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    18. Hossein Kakahaji & Hamed Banadaki & Abbas Kakahaji & Abdulamir Kakahaji, 2013. "Prediction of Urmia Lake Water-Level Fluctuations by Using Analytical, Linear Statistic and Intelligent Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4469-4492, October.
    19. Muhammet Emiroglu & Ozgur Kisi, 2013. "Prediction of Discharge Coefficient for Trapezoidal Labyrinth Side Weir Using a Neuro-Fuzzy Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1473-1488, March.
    20. Samad Emamgholizadeh & Khadije Moslemi & Gholamhosein Karami, 2014. "Prediction the Groundwater Level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5433-5446, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:12:d:10.1007_s11269-019-02356-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.