IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i10d10.1007_s11269-024-03828-6.html
   My bibliography  Save this article

Simultaneous Minimization of Water Age and Pressure in Water Distribution Systems by Pressure Reducing Valves

Author

Listed:
  • Kristina Korder

    (Technische Universität Ilmenau)

  • Hao Cao

    (Technische Universität Ilmenau)

  • Elad Salomons

    (Technion – Israel Institute of Technology)

  • Avi Ostfeld

    (Technion – Israel Institute of Technology)

  • Pu Li

    (Technische Universität Ilmenau)

Abstract

Pressure reducing valves (PRVs) are essentially used to reduce operational pressures in water distribution systems (WDSs) to minimize water leakage. However, water age in a WDS is an important variable describing the water quality and should be kept as low as possible. Therefore, the aim of this study is to investigate the possibility and potential of simultaneously minimizing both pressure and water age by using PRVs. To determine the optimal location and setting of PRVs, a mixed-integer nonlinear programming (MINLP) problem is formulated with minimization of the sum of the weighted total water age and pressure as the objective function, where the weighting factor can be defined by the user’s preference. The equality constraints consist of the hydraulic equations and water age functions to describe pressure and water age in the distribution network, while the inequality constraints ensure them in the defined operating ranges, respectively. Applying the proposed approach to two case studies, the results show that both water age and pressure can indeed be significantly reduced by the optimized position and setting of the PRVs.

Suggested Citation

  • Kristina Korder & Hao Cao & Elad Salomons & Avi Ostfeld & Pu Li, 2024. "Simultaneous Minimization of Water Age and Pressure in Water Distribution Systems by Pressure Reducing Valves," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(10), pages 3561-3579, August.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:10:d:10.1007_s11269-024-03828-6
    DOI: 10.1007/s11269-024-03828-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03828-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03828-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pham Dai & Pu Li, 2014. "Optimal Localization of Pressure Reducing Valves in Water Distribution Systems by a Reformulation Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3057-3074, August.
    2. Carmine Covelli & Luca Cozzolino & Luigi Cimorelli & Renata Della Morte & Domenico Pianese, 2016. "Optimal Location and Setting of PRVs in WDS for Leakage Minimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1803-1817, March.
    3. Carmine Covelli & Luca Cozzolino & Luigi Cimorelli & Renata Della Morte & Domenico Pianese, 2016. "Optimal Location and Setting of PRVs in WDS for Leakage Minimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1803-1817, March.
    4. Pham Duc Dai & Pu Li, 2016. "Optimal Pressure Regulation in Water Distribution Systems Based on an Extended Model for Pressure Reducing Valves," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1239-1254, February.
    5. Filippo Pecci & Edo Abraham & Ivan Stoianov, 2017. "Penalty and relaxation methods for the optimal placement and operation of control valves in water supply networks," Computational Optimization and Applications, Springer, vol. 67(1), pages 201-223, May.
    6. Aditya Gupta & Neeraj Bokde & K. D. Kulat, 2018. "Hybrid Leakage Management for Water Network Using PSF Algorithm and Soft Computing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1133-1151, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamás Huzsvár & Richárd Wéber & Marcell Szabó & Csaba Hős, 2023. "Optimal Placement and Settings of Valves for Leakage Reduction in Real Life Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4949-4967, September.
    2. Aditya Gupta & K. D. Kulat, 2018. "A Selective Literature Review on Leak Management Techniques for Water Distribution System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3247-3269, August.
    3. Aditya Gupta & Neeraj Bokde & Kishore Kulat & Zaher Mundher Yaseen, 2020. "Nodal Matrix Analysis for Optimal Pressure-Reducing Valve Localization in a Water Distribution System," Energies, MDPI, vol. 13(8), pages 1-17, April.
    4. Aditya Gupta & Neeraj Bokde & K. D. Kulat, 2018. "Hybrid Leakage Management for Water Network Using PSF Algorithm and Soft Computing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1133-1151, February.
    5. Tianwei Mu & Yaqi Li & Ziyi Li & Luyue Wang & Haoqiang Tan & Chengzhi Zheng, 2021. "Improved Network Reliability Optimization Model with Head Loss for Water Distribution System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2101-2114, May.
    6. Thapa, Bhesh Raj & Ishidaira, H. & Pandey, Vishnu Prasad & Bhandari, T. M. & Shakya, N. M., 2018. "Evaluation of water security in Kathmandu Valley before and after water transfer from another basin," Papers published in Journals (Open Access), International Water Management Institute, pages 10(2):1-12..
    7. Roberto del Teso & Elena Gómez & Elvira Estruch-Juan & Enrique Cabrera, 2019. "Topographic Energy Management in Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4385-4400, September.
    8. Davi Edson Sales Souza & André Luiz Amarante Mesquita & Claudio José Cavalcante Blanco, 2023. "Pressure Regulation in a Water Distribution Network Using Pumps as Turbines at Variable Speed for Energy Recovery," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1183-1206, February.
    9. Jinping Zhang & Hongbin Li & Xixi Shi & Yang Hong, 2019. "Wavelet-Nonlinear Cointegration Prediction of Irrigation Water in the Irrigation District," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2941-2954, June.
    10. Gabriella Balacco & Mario Binetti & Leonardo Caggiani & Michele Ottomanelli, 2021. "A Novel Distributed System of e-Vehicle Charging Stations Based on Pumps as Turbine to Support Sustainable Micromobility," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    11. Fei Wang & Xia-zhong Zheng & Shu Chen & Jian-Lan Zhou, 2017. "Emergency Repair Scope Partition of City Water Distribution Network: a Novel Approach Considering the Node Importance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3779-3794, September.
    12. Bárbara Brzezinski Azevedo & Tarcísio Abreu Saurin, 2018. "Losses in Water Distribution Systems: A Complexity Theory Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 2919-2936, July.
    13. Neeraj Bokde & Andrés Feijóo & Daniel Villanueva & Kishore Kulat, 2018. "A Novel and Alternative Approach for Direct and Indirect Wind-Power Prediction Methods," Energies, MDPI, vol. 11(11), pages 1-19, October.
    14. Filippo Pecci & Edo Abraham & Ivan Stoianov, 2017. "Penalty and relaxation methods for the optimal placement and operation of control valves in water supply networks," Computational Optimization and Applications, Springer, vol. 67(1), pages 201-223, May.
    15. Pham Duc Dai, 2023. "A Real Time Optimization Based Sequential Convex Program for Pressure Management in Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4751-4768, September.
    16. Simone Ferrari & Milad Zoghi & Giancarlo Paganin & Giuliano Dall’O’, 2023. "A Practical Review to Support the Implementation of Smart Solutions within Neighbourhood Building Stock," Energies, MDPI, vol. 16(15), pages 1-35, July.
    17. Diamantis Karakatsanis & Nicolaos Theodossiou, 2022. "Smart Hydropower Water Distribution Networks, Use of Artificial Intelligence Methods and Metaheuristic Algorithms to Generate Energy from Existing Water Supply Networks," Energies, MDPI, vol. 15(14), pages 1-21, July.
    18. Armando Carravetta & Oreste Fecarotta & Umberto Maria Golia & Michele Rocca & Riccardo Martino & Roberta Padulano & Tullio Tucciarelli, 2016. "Optimization of Osmotic Desalination Plants for Water Supply Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3965-3978, September.
    19. Carmine Covelli & Luca Cozzolino & Luigi Cimorelli & Renata Della Morte & Domenico Pianese, 2016. "Optimal Location and Setting of PRVs in WDS for Leakage Minimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1803-1817, March.
    20. Francisco Martínez-Álvarez & Amandine Schmutz & Gualberto Asencio-Cortés & Julien Jacques, 2018. "A Novel Hybrid Algorithm to Forecast Functional Time Series Based on Pattern Sequence Similarity with Application to Electricity Demand," Energies, MDPI, vol. 12(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:10:d:10.1007_s11269-024-03828-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.