IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v85y2006i3p272-278.html
   My bibliography  Save this article

The auto-regulative capability of pitcher irrigation system

Author

Listed:
  • Abu-Zreig, Majed M.
  • Abe, Yukuo
  • Isoda, Hiroko

Abstract

No abstract is available for this item.

Suggested Citation

  • Abu-Zreig, Majed M. & Abe, Yukuo & Isoda, Hiroko, 2006. "The auto-regulative capability of pitcher irrigation system," Agricultural Water Management, Elsevier, vol. 85(3), pages 272-278, October.
  • Handle: RePEc:eee:agiwat:v:85:y:2006:i:3:p:272-278
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(06)00133-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Batchelor, Charles & Lovell, Christopher & Murata, Monica, 1996. "Simple microirrigation techniques for improving irrigation efficiency on vegetable gardens," Agricultural Water Management, Elsevier, vol. 32(1), pages 37-48, November.
    2. Bainbridge, David A., 2001. "Buried clay pot irrigation: a little known but very efficient traditional method of irrigation," Agricultural Water Management, Elsevier, vol. 48(2), pages 79-88, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pachpute, J.S., 2010. "A package of water management practices for sustainable growth and improved production of vegetable crop in labour and water scarce Sub-Saharan Africa," Agricultural Water Management, Elsevier, vol. 97(9), pages 1251-1258, September.
    2. Hojjat Ghorbani Vaghei & Hossein Ali Bahrami & Farzin Nasiri Saleh, 2023. "Optimizing Soil Moisture in Subsurface Irrigation System Based on Porous Clay Capsule Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3037-3051, June.
    3. Evgenia Mahler, 2024. "Innovations in Clay-Based Irrigation Technologies—A Systematic Review," Sustainability, MDPI, vol. 16(16), pages 1-23, August.
    4. Wang, JiaJia & Long, HuaiYu & Huang, YuanFang & Wang, XiangLing & Cai, Bin & Liu, Wei, 2019. "Effects of different irrigation management parameters on cumulative water supply under negative pressure irrigation," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    5. Naik, B.S. & Panda, R.K. & Nayak, S.C. & Sharma, S.D., 2008. "Hydraulics and salinity profile of pitcher irrigation in saline water condition," Agricultural Water Management, Elsevier, vol. 95(10), pages 1129-1134, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Yaohui & Yao, Chunping & Wu, Pute & Zhang, Lin & Zhu, Delan & Chen, Junying & Du, Yichao, 2021. "Effectiveness of a subsurface irrigation system with ceramic emitters under low-pressure conditions," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Cai, Yaohui & Wu, Pute & Zhang, Lin & Zhu, Delan & Chen, Junying & Wu, ShouJun & Zhao, Xiao, 2017. "Simulation of soil water movement under subsurface irrigation with porous ceramic emitter," Agricultural Water Management, Elsevier, vol. 192(C), pages 244-256.
    3. Naik, B.S. & Panda, R.K. & Nayak, S.C. & Sharma, S.D., 2008. "Hydraulics and salinity profile of pitcher irrigation in saline water condition," Agricultural Water Management, Elsevier, vol. 95(10), pages 1129-1134, October.
    4. Siyal, A.A. & Skaggs, T.H., 2009. "Measured and simulated soil wetting patterns under porous clay pipe sub-surface irrigation," Agricultural Water Management, Elsevier, vol. 96(6), pages 893-904, June.
    5. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    6. Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    7. Giuliani, Nicola & Aguzzoni, Agnese & Penna, Daniele & Tagliavini, Massimo, 2023. "Estimating uptake and internal transport dynamics of irrigation water in apple trees using deuterium-enriched water," Agricultural Water Management, Elsevier, vol. 289(C).
    8. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2020. "Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth," Agricultural Water Management, Elsevier, vol. 231(C).
    9. Woltering, Lennart & Ibrahim, Ali & Pasternak, Dov & Ndjeunga, Jupiter, 2011. "The economics of low pressure drip irrigation and hand watering for vegetable production in the Sahel," Agricultural Water Management, Elsevier, vol. 99(1), pages 67-73.
    10. Caroline Sullivan & Jeremy Meigh, 2007. "Integration of the biophysical and social sciences using an indicator approach: Addressing water problems at different scales," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 111-128, January.
    11. Evgenia Mahler, 2024. "Innovations in Clay-Based Irrigation Technologies—A Systematic Review," Sustainability, MDPI, vol. 16(16), pages 1-23, August.
    12. Bai, Mengjie & Tao, Qibo & Zhang, Zuxin & Lang, Shuqing & Li, Junhui & Chen, Dali & Wang, Yanrong & Hu, Xiaowen, 2023. "Effect of drip irrigation on seed yield, seed quality and water use efficiency of Hedysarum fruticosum in the arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 278(C).
    13. Zhang, Tibin & Dong, Qin’ge & Zhan, Xiaoyun & He, Jianqiang & Feng, Hao, 2019. "Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production," Agricultural Water Management, Elsevier, vol. 213(C), pages 636-645.
    14. Pachpute, J.S., 2010. "A package of water management practices for sustainable growth and improved production of vegetable crop in labour and water scarce Sub-Saharan Africa," Agricultural Water Management, Elsevier, vol. 97(9), pages 1251-1258, September.
    15. Qi, Wei & Zhang, Zhanyu & Wang, Ce & Huang, Mingyi, 2021. "Prediction of infiltration behaviors and evaluation of irrigation efficiency in clay loam soil under Moistube® irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    16. Liu, Shuhui & Kang, Yaohu & Wan, Shuqin & Wang, Zhichun & Liang, Zhengwei & Jiang, Shufang & Wang, Ruoshui, 2012. "Germination and growth of Puccinellia tenuiflora in saline-sodic soil under drip irrigation," Agricultural Water Management, Elsevier, vol. 109(C), pages 127-134.
    17. Hatungimana, JC & Niyigaba, JB & Kwitonda, TS & Tuyishimire, P, 2023. "Water Saving And Water Productivity Under Buried Clay Pot And Drip Irrigation Systems For Cabbage In Rwanda," African Journal of Food, Agriculture, Nutrition and Development (AJFAND), African Journal of Food, Agriculture, Nutrition and Development (AJFAND), vol. 23(3), January.
    18. Hou, Zhenan & Chen, Weiping & Li, Xiao & Xiu, Lin & Wu, Laosheng, 2009. "Effects of salinity and fertigation practice on cotton yield and 15N recovery," Agricultural Water Management, Elsevier, vol. 96(10), pages 1483-1489, October.
    19. Liu, Shuhui & Kang, Yaohu & Wan, Shuqin & Wang, Zhichun & Liang, Zhengwei & Sun, Xiaojing, 2011. "Water and salt regulation and its effects on Leymus chinensis growth under drip irrigation in saline-sodic soils of the Songnen Plain," Agricultural Water Management, Elsevier, vol. 98(9), pages 1469-1476, July.
    20. Yang, Kaijing & Wang, Fengxin & Shock, Clinton C. & Kang, Shaozhong & Huo, Zailin & Song, Na & Ma, Dan, 2017. "Potato performance as influenced by the proportion of wetted soil volume and nitrogen under drip irrigation with plastic mulch," Agricultural Water Management, Elsevier, vol. 179(C), pages 260-270.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:85:y:2006:i:3:p:272-278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.