IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i6d10.1007_s11269-022-03118-z.html
   My bibliography  Save this article

Forecasting Groundwater Levels using a Hybrid of Support Vector Regression and Particle Swarm Optimization

Author

Listed:
  • Saeed Mozaffari

    (University of Tehran)

  • Saman Javadi

    (University of Tehran)

  • Hamid Kardan Moghaddam

    (Water Research Institute)

  • Timothy O. Randhir

    (University of Massachusetts)

Abstract

Forecasting the groundwater level is crucial to managing water resources supply sustainably. In this study, a simulation–optimization hybrid model was developed to forecast groundwater levels in aquifers. The model uses the PSO (Particle Swarm Optimization) algorithm to optimize SVR (Support Vector Regression) parameters to predict groundwater levels. The groundwater level of the Zanjan aquifer in Iran was forecasted and compared to the results of Bayesian and SVR models. In the first approach, the aquifers hydrograph was extracted using the Thiessen method, and then the time series of the hydrograph was used in training and testing the model. In the second approach, the time series data from each well was trained and tested separately. In other words, for 35 observation wells, 35 predictions were made. Aquifer’s hydrograph was evaluated using the forecasted groundwater level in the wells. The results showed that the SVR-PSO hybrid model performed better than other models in terms of Root Mean Square Error (RMSE) and coefficient of determination ( $${R}^{2}$$ R 2 ) in both approaches. In the first approach, the SVR-PSO hybrid model forecasted the groundwater level in the next month with a training RMSE of 0.118 m and testing RMSE of 0.221 m. In the second approach, using the SVR-PSO hybrid model, the RMSE error was reduced in 88.57% of the wells compared to other models, and more reliable results were achieved. Based on the performance, the SVR-PSO hybrid model can be used as a tool for decision support and management of similar aquifers.

Suggested Citation

  • Saeed Mozaffari & Saman Javadi & Hamid Kardan Moghaddam & Timothy O. Randhir, 2022. "Forecasting Groundwater Levels using a Hybrid of Support Vector Regression and Particle Swarm Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1955-1972, April.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:6:d:10.1007_s11269-022-03118-z
    DOI: 10.1007/s11269-022-03118-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03118-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03118-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammad Rezaie-Balf & Zahra Zahmatkesh & Sungwon Kim, 2017. "Soft Computing Techniques for Rainfall-Runoff Simulation: Local Non–Parametric Paradigm vs. Model Classification Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3843-3865, September.
    2. Ankita P. Dadhich & Rohit Goyal & Pran N. Dadhich, 2021. "Assessment and Prediction of Groundwater using Geospatial and ANN Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2879-2893, July.
    3. M. Shourian & S. Mousavi & A. Tahershamsi, 2008. "Basin-wide Water Resources Planning by Integrating PSO Algorithm and MODSIM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1347-1366, October.
    4. Maryam Malekzadeh & Saeid Kardar & Keivan Saeb & Saeid Shabanlou & Lobat Taghavi, 2019. "A Novel Approach for Prediction of Monthly Ground Water Level Using a Hybrid Wavelet and Non-Tuned Self-Adaptive Machine Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1609-1628, March.
    5. Uusitalo, Laura, 2007. "Advantages and challenges of Bayesian networks in environmental modelling," Ecological Modelling, Elsevier, vol. 203(3), pages 312-318.
    6. Abbas Roozbahani & Ebrahim Ebrahimi & Mohammad Ebrahim Banihabib, 2018. "A Framework for Ground Water Management Based on Bayesian Network and MCDM Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4985-5005, December.
    7. Hamid Safavi & Mahdieh Esmikhani, 2013. "Conjunctive Use of Surface Water and Groundwater: Application of Support Vector Machines (SVMs) and Genetic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2623-2644, May.
    8. Akram Rahbar & Ali Mirarabi & Mohammad Nakhaei & Mahdi Talkhabi & Maryam Jamali, 2022. "A Comparative Analysis of Data-Driven Models (SVR, ANFIS, and ANNs) for Daily Karst Spring Discharge Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 589-609, January.
    9. Georgios N. Kouziokas & Alexander Chatzigeorgiou & Konstantinos Perakis, 2018. "Multilayer Feed Forward Models in Groundwater Level Forecasting Using Meteorological Data in Public Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5041-5052, December.
    10. Karimipour, Arash & Bagherzadeh, Seyed Amin & Taghipour, Abdolmajid & Abdollahi, Ali & Safaei, Mohammad Reza, 2019. "A novel nonlinear regression model of SVR as a substitute for ANN to predict conductivity of MWCNT-CuO/water hybrid nanofluid based on empirical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 89-97.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ajay Singh, 2022. "Better Water and Land Allocation for Long-term Agricultural Sustainability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3505-3522, August.
    2. Zahra Dashti & Mohammad Nakhaei & Meysam Vadiati & Gholam Hossein Karami & Ozgur Kisi, 2023. "Estimation of Unconfined Aquifer Transmissivity Using a Comparative Study of Machine Learning Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4909-4931, September.
    3. Farhana Islam & Monzur Alam Imteaz, 2022. "A Novel Hybrid Approach for Predicting Western Australia’s Seasonal Rainfall Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3649-3672, August.
    4. Zhuo Jia & Yuhao Peng & Qin Li & Rui Xiao & Xue Chen & Zhijin Cheng, 2024. "Monthly Runoff forecasting using A Climate‑driven Model Based on Two-stage Decomposition and Optimized Support Vector Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(14), pages 5701-5722, November.
    5. Yong Huang & Kehan Miao & Xiaoguang Liu & Yin Jiang, 2022. "The Hysteresis Response of Groundwater to Reservoir Water Level Changes in a Plain Reservoir Area," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4739-4763, September.
    6. Saeideh Samani & Meysam Vadiati & Farahnaz Azizi & Efat Zamani & Ozgur Kisi, 2022. "Groundwater Level Simulation Using Soft Computing Methods with Emphasis on Major Meteorological Components," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3627-3647, August.
    7. R. Sarma & S. K. Singh, 2022. "A Comparative Study of Data-driven Models for Groundwater Level Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2741-2756, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vassilios A. Tsihrintzis & Harris Vangelis, 2018. "Water Resources and Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4813-4817, December.
    2. Di Zhang & Xinping Yan & Zaili Yang & Jin Wang, 2014. "An accident data–based approach for congestion risk assessment of inland waterways: A Yangtze River case," Journal of Risk and Reliability, , vol. 228(2), pages 176-188, April.
    3. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    4. Ghazvini, Mahyar & Maddah, Heydar & Peymanfar, Reza & Ahmadi, Mohammad Hossein & Kumar, Ravinder, 2020. "Experimental evaluation and artificial neural network modeling of thermal conductivity of water based nanofluid containing magnetic copper nanoparticles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    5. Nicholson, Ann E. & Flores, M. Julia, 2011. "Combining state and transition models with dynamic Bayesian networks," Ecological Modelling, Elsevier, vol. 222(3), pages 555-566.
    6. Moe, S. Jannicke & Haande, Sigrid & Couture, Raoul-Marie, 2016. "Climate change, cyanobacteria blooms and ecological status of lakes: A Bayesian network approach," Ecological Modelling, Elsevier, vol. 337(C), pages 330-347.
    7. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    8. De Iuliis, Melissa & Kammouh, Omar & Cimellaro, Gian Paolo & Tesfamariam, Solomon, 2021. "Quantifying restoration time of power and telecommunication lifelines after earthquakes using Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    9. Qian Zhang & Xiujuan Liang & Zhang Fang & Tao Jiang & Yubo Wang & Lei Wang, 2016. "Urban water resources allocation and shortage risk mapping with support vector machine method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1209-1228, March.
    10. Yong Peng & Jinggang Chu & Anbang Peng & Huicheng Zhou, 2015. "Optimization Operation Model Coupled with Improving Water-Transfer Rules and Hedging Rules for Inter-Basin Water Transfer-Supply Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3787-3806, August.
    11. Antonio Bracale & Pasquale De Falco, 2015. "An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power," Energies, MDPI, vol. 8(9), pages 1-22, September.
    12. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    13. Renken, Henk & Mumby, Peter J., 2009. "Modelling the dynamics of coral reef macroalgae using a Bayesian belief network approach," Ecological Modelling, Elsevier, vol. 220(9), pages 1305-1314.
    14. A. Dariane & S. Sarani, 2013. "Application of Intelligent Water Drops Algorithm in Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4827-4843, November.
    15. Abbas Al-Omari & Saleh Al-Quraan & Adnan Al-Salihi & Fayez Abdulla, 2009. "A Water Management Support System for Amman Zarqa Basin in Jordan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(15), pages 3165-3189, December.
    16. J. Doummar & M. Massoud & R. Khoury & M. Khawlie, 2009. "Optimal Water Resources Management: Case of Lower Litani River, Lebanon," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2343-2360, September.
    17. S. Jamshid Mousavi & Nasrin Rafiee Anzab & Bentolhoda Asl-Rousta & Joong Hoon Kim, 2017. "Multi-Objective Optimization-Simulation for Reliability-Based Inter-Basin Water Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3445-3464, September.
    18. Dilip Kumar Roy & Sujit Kumar Biswas & Kowshik Kumar Saha & Khandakar Faisal Ibn Murad, 2021. "Groundwater Level Forecast Via a Discrete Space-State Modelling Approach as a Surrogate to Complex Groundwater Simulation Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1653-1672, April.
    19. Qian Zhang & Xiujuan Liang & Zhang Fang & Tao Jiang & Yubo Wang & Lei Wang, 2016. "Urban water resources allocation and shortage risk mapping with support vector machine method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1209-1228, March.
    20. Navid Shenava & Mojtaba Shourian, 2018. "Optimal Reservoir Operation with Water Supply Enhancement and Flood Mitigation Objectives Using an Optimization-Simulation Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4393-4407, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:6:d:10.1007_s11269-022-03118-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.