IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i2d10.1007_s11269-021-02974-5.html
   My bibliography  Save this article

Spatiotemporal Analysis of Droughts Over Different Climate Regions Using Hybrid Clustering Method

Author

Listed:
  • Kiyoumars Roushangar

    (University of Tabriz
    University of Tabriz)

  • Roghayeh Ghasempour

    (University of Tabriz)

  • Vahid Nourani

    (University of Tabriz
    University of Tabriz
    Near East University, Faculty of Civil and Environmental Engineering)

Abstract

Assessment of spatiotemporal variations of drought is an efficient method for implementing drought mitigation strategies and reducing its negative impacts. This study aimed to assess the spatiotemporal pattern of short- to long-term droughts for an area with different climates. Therefore, 31 stations located in Iran were selected and the Standardized Precipitation Index (SPI) series with timescales of 3, 6, and 12 months were computed during the 1951-2016 period. A hybrid methodology including Maximal Overlap Discrete Wavelet Transform (MODWT) and K-means methods was used for obtaining the SPIs time-frequency properties and multiscale zoning of the area. The energy amounts of the decomposed subseries via the MODWT were applied as inputs for K-means. Also, the statistics in drought features (i.e. drought duration, severity, and peak) were assessed and the results showed that shorter term droughts (i.e. SPI-3 and -6) were more frequent and severe in the northern parts where the lowest values were obtained for drought duration. It was observed that the regions with more droughts frequency had the highest energy values. For shorter term droughts a direct relationship was obtained between the energy values and the mean SPIs, drought severity, and drought peak, whereas an inverse relationship was obtained for longer term drought. It was found that increasing the degree of SPI led to more similarity between the stations of each cluster. Also, the homogeneity of stations for the SPI-12 was slightly higher than the SPI-3 and -6.

Suggested Citation

  • Kiyoumars Roushangar & Roghayeh Ghasempour & Vahid Nourani, 2022. "Spatiotemporal Analysis of Droughts Over Different Climate Regions Using Hybrid Clustering Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 473-488, January.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:2:d:10.1007_s11269-021-02974-5
    DOI: 10.1007/s11269-021-02974-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02974-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02974-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Tigkas & Harris Vangelis & George Tsakiris, 2020. "Implementing Crop Evapotranspiration in RDI for Farm-Level Drought Evaluation and Adaptation under Climate Change Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(14), pages 4329-4343, November.
    2. Dinpashoh, Yagob, 2006. "Study of reference crop evapotranspiration in I.R. of Iran," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 123-129, July.
    3. Mohamad Sakizadeh & Mohamed M. A. Mohamed & Harald Klammler, 2019. "Trend Analysis and Spatial Prediction of Groundwater Levels Using Time Series Forecasting and a Novel Spatio-Temporal Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1425-1437, March.
    4. Sergio Vicente-Serrano, 2007. "Evaluating the Impact of Drought Using Remote Sensing in a Mediterranean, Semi-arid Region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(1), pages 173-208, January.
    5. U. Surendran & B. Anagha & P. Raja & V. Kumar & K. Rajan & M. Jayakumar, 2019. "Analysis of Drought from Humid, Semi-Arid and Arid Regions of India Using DrinC Model with Different Drought Indices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1521-1540, March.
    6. Kate Marvel & Benjamin I. Cook & Céline J. W. Bonfils & Paul J. Durack & Jason E. Smerdon & A. Park Williams, 2019. "Twentieth-century hydroclimate changes consistent with human influence," Nature, Nature, vol. 569(7754), pages 59-65, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qing Shuang & Rui Ting Zhao & Erik Porse, 2024. "Cluster Analysis and Predictive Modeling of Urban Water Distribution System Leaks with Socioeconomic and Engineering Factors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 385-400, January.
    2. Roghayeh Ghasempour & Mohammad Taghi Aalami & Kiyoumars Roushangar, 2022. "Drought Vulnerability Assessment Based on a Multi-criteria Integrated Approach and Application of Satellite-based Datasets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3839-3858, August.
    3. Yonca Cavus & Kerstin Stahl & Hafzullah Aksoy, 2022. "Revisiting Major Dry Periods by Rolling Time Series Analysis for Human-Water Relevance in Drought," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2725-2739, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kiyoumars Roushangar & Roghayeh Ghasempour & Farhad Alizadeh, 2022. "Uncertainty Assessment of the Integrated Hybrid Data Processing Techniques for Short to Long Term Drought Forecasting in Different Climate Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 273-296, January.
    2. Abdol Rassoul Zarei & Mohammad Reza Mahmoudi, 2020. "Ability Assessment of the Stationary and Cyclostationary Time Series Models to Predict Drought Indices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 5009-5029, December.
    3. Roghayeh Ghasempour & Mohammad Taghi Aalami & Kiyoumars Roushangar, 2022. "Drought Vulnerability Assessment Based on a Multi-criteria Integrated Approach and Application of Satellite-based Datasets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3839-3858, August.
    4. Rengui Jiang & Jiancang Xie & Hailong He & Jungang Luo & Jiwei Zhu, 2015. "Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2885-2903, February.
    5. Lina Eklund & Jonathan Seaquist, 2015. "Meteorological, agricultural and socioeconomic drought in the Duhok Governorate, Iraqi Kurdistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 421-441, March.
    6. Rui Li & Jing’ai Wang & Tianjie Zhao & Jiancheng Shi, 2016. "Index-based evaluation of vegetation response to meteorological drought in Northern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2179-2193, December.
    7. Mohammad Ahsan Uddin & ASM Maksud Kamal & Shamsuddin Shahid & Eun-Sung Chung, 2020. "Volatility in Rainfall and Predictability of Droughts in Northwest Bangladesh," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
    8. Kafi, Mohammad & Asadi, Hajar & Ganjeali, Ali, 2010. "Possible utilization of high-salinity waters and application of low amounts of water for production of the halophyte Kochia scoparia as alternative fodder in saline agroecosystems," Agricultural Water Management, Elsevier, vol. 97(1), pages 139-147, January.
    9. Ruperto Ortiz-Gómez & Roberto S. Flowers-Cano & Guillermo Medina-García, 2022. "Sensitivity of the RDI and SPEI Drought Indices to Different Models for Estimating Evapotranspiration Potential in Semiarid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2471-2492, May.
    10. Laura Şmuleac & Ciprian Rujescu & Adrian Șmuleac & Florin Imbrea & Isidora Radulov & Dan Manea & Anișoara Ienciu & Tabita Adamov & Raul Pașcalău, 2020. "Impact of Climate Change in the Banat Plain, Western Romania, on the Accessibility of Water for Crop Production in Agriculture," Agriculture, MDPI, vol. 10(10), pages 1-24, September.
    11. Xue Yang & Shaochun Huang, 2023. "Attribution assessment of hydrological trends and extremes to climate change for Northern high latitude catchments in Norway," Climatic Change, Springer, vol. 176(10), pages 1-25, October.
    12. Sergio M. Vicente-Serrano & Miquel Tomas-Burguera & Santiago Beguería & Fergus Reig & Borja Latorre & Marina Peña-Gallardo & M. Yolanda Luna & Ana Morata & José C. González-Hidalgo, 2017. "A High Resolution Dataset of Drought Indices for Spain," Data, MDPI, vol. 2(3), pages 1-10, June.
    13. Nicolas Misailidis Stríkis & Plácido Fabrício Silva Melo Buarque & Francisco William Cruz & Juan Pablo Bernal & Mathias Vuille & Ernesto Tejedor & Matheus Simões Santos & Marília Harumi Shimizu & Ange, 2024. "Modern anthropogenic drought in Central Brazil unprecedented during last 700 years," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Farman Ali & Bing-Zhao Li & Zulfiqar Ali, 2021. "Strengthening Drought Monitoring Module by Ensembling Auxiliary Information Based Varying Estimators," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3235-3252, August.
    15. Ivan C. Hanigan & Timothy B. Chaston, 2022. "Climate Change, Drought and Rural Suicide in New South Wales, Australia: Future Impact Scenario Projections to 2099," IJERPH, MDPI, vol. 19(13), pages 1-12, June.
    16. Luong, Tuan Anh & Nguyen, Manh-Hung, 2024. "Aging in the Air: The Impact of Carbon Emissions on Health-Related Quality of Life," TSE Working Papers 24-1549, Toulouse School of Economics (TSE).
    17. V. K. Prajapati & M. Khanna & M. Singh & R. Kaur & R. N. Sahoo & D. K. Singh, 2021. "Evaluation of time scale of meteorological, hydrological and agricultural drought indices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 89-109, October.
    18. Dilip Kumar Roy & Sujit Kumar Biswas & Kowshik Kumar Saha & Khandakar Faisal Ibn Murad, 2021. "Groundwater Level Forecast Via a Discrete Space-State Modelling Approach as a Surrogate to Complex Groundwater Simulation Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1653-1672, April.
    19. Zheng Li & Tao Zhou & Xiang Zhao & Kaicheng Huang & Shan Gao & Hao Wu & Hui Luo, 2015. "Assessments of Drought Impacts on Vegetation in China with the Optimal Time Scales of the Climatic Drought Index," IJERPH, MDPI, vol. 12(7), pages 1-20, July.
    20. Bin Li & Hongbo Su & Fang Chen & Jianjun Wu & Jianwei Qi, 2013. "The changing characteristics of drought in China from 1982 to 2005," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 723-743, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:2:d:10.1007_s11269-021-02974-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.