IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v84y2006i1-2p123-129.html
   My bibliography  Save this article

Study of reference crop evapotranspiration in I.R. of Iran

Author

Listed:
  • Dinpashoh, Yagob

Abstract

No abstract is available for this item.

Suggested Citation

  • Dinpashoh, Yagob, 2006. "Study of reference crop evapotranspiration in I.R. of Iran," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 123-129, July.
  • Handle: RePEc:eee:agiwat:v:84:y:2006:i:1-2:p:123-129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(06)00072-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. DehghaniSanij, Hossein & Yamamoto, Tahei & Rasiah, Velu, 2004. "Assessment of evapotranspiration estimation models for use in semi-arid environments," Agricultural Water Management, Elsevier, vol. 64(2), pages 91-106, January.
    2. Watanabe, Kota & Yamamoto, Takashi & Yamada, Takashi & Sakuratani, Tetsuo & Nawata, Eiji & Noichana, Chairat & Sributta, Akadet & Higuchi, Hirokazu, 2004. "Changes in seasonal evapotranspiration, soil water content, and crop coefficients in sugarcane, cassava, and maize fields in Northeast Thailand," Agricultural Water Management, Elsevier, vol. 67(2), pages 133-143, June.
    3. Pereira, Antonio Roberto & Pruitt, William Oregon, 2004. "Adaptation of the Thornthwaite scheme for estimating daily reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 66(3), pages 251-257, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raziei, Tayeb & Pereira, Luis S., 2013. "Estimation of ETo with Hargreaves–Samani and FAO-PM temperature methods for a wide range of climates in Iran," Agricultural Water Management, Elsevier, vol. 121(C), pages 1-18.
    2. Alireza Sharifi & Yagob Dinpashoh, 2014. "Sensitivity Analysis of the Penman-Monteith reference Crop Evapotranspiration to Climatic Variables in Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5465-5476, December.
    3. Anurag Malik & Anil Kumar, 2015. "Pan Evaporation Simulation Based on Daily Meteorological Data Using Soft Computing Techniques and Multiple Linear Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1859-1872, April.
    4. Zhao, Wenzhi & Chang, Xuexiang & Chang, Xueli & Zhang, Dengrong & Liu, Bing & Du, Jun & Lin, Pengfei, 2018. "Estimating water consumption based on meta-analysis and MODIS data for an oasis region in northwestern China," Agricultural Water Management, Elsevier, vol. 208(C), pages 478-489.
    5. Tomas-Burguera, Miquel & Vicente-Serrano, Sergio M. & Grimalt, Miquel & Beguería, Santiago, 2017. "Accuracy of reference evapotranspiration (ETo) estimates under data scarcity scenarios in the Iberian Peninsula," Agricultural Water Management, Elsevier, vol. 182(C), pages 103-116.
    6. Ayyoub, A. & Er-Raki, S. & Khabba, S. & Merlin, O. & Ezzahar, J. & Rodriguez, J.C. & Bahlaoui, A. & Chehbouni, A., 2017. "A simple and alternative approach based on reference evapotranspiration and leaf area index for estimating tree transpiration in semi-arid regions," Agricultural Water Management, Elsevier, vol. 188(C), pages 61-68.
    7. Kafi, Mohammad & Asadi, Hajar & Ganjeali, Ali, 2010. "Possible utilization of high-salinity waters and application of low amounts of water for production of the halophyte Kochia scoparia as alternative fodder in saline agroecosystems," Agricultural Water Management, Elsevier, vol. 97(1), pages 139-147, January.
    8. Raziei, Tayeb & Pereira, Luis S., 2013. "Spatial variability analysis of reference evapotranspiration in Iran utilizing fine resolution gridded datasets," Agricultural Water Management, Elsevier, vol. 126(C), pages 104-118.
    9. Kiyoumars Roushangar & Roghayeh Ghasempour & Vahid Nourani, 2022. "Spatiotemporal Analysis of Droughts Over Different Climate Regions Using Hybrid Clustering Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 473-488, January.
    10. Yamaç, Sevim Seda & Todorovic, Mladen, 2020. "Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data," Agricultural Water Management, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. O.E. Mohawesh, 2011. "Evaluation of evapotranspiration models for estimating daily reference evapotranspiration in arid and semiarid environments," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 57(4), pages 145-152.
    2. Singh Rawat, Kishan & Kumar Singh, Sudhir & Bala, Anju & Szabó, Szilárd, 2019. "Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 213(C), pages 922-933.
    3. Jabloun, M. & Sahli, A., 2008. "Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: Application to Tunisia," Agricultural Water Management, Elsevier, vol. 95(6), pages 707-715, June.
    4. Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.
    5. Slavisa Trajkovic & Srdjan Kolakovic, 2009. "Evaluation of Reference Evapotranspiration Equations Under Humid Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 3057-3067, November.
    6. Sharafi, Saeed & Nahvinia, Mohammad Javad, 2024. "Sustainability insights: Enhancing rainfed wheat and barley yield prediction in arid regions," Agricultural Water Management, Elsevier, vol. 299(C).
    7. Shiri, Jalal, 2017. "Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating daily reference evapotranspiration in hyper-arid regions of Iran," Agricultural Water Management, Elsevier, vol. 188(C), pages 101-114.
    8. Liu, Yi & Li, Shiqing & Chen, Fang & Yang, Shenjiao & Chen, Xinping, 2010. "Soil water dynamics and water use efficiency in spring maize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 97(5), pages 769-775, May.
    9. Mohammad Valipour, 2014. "Use of average data of 181 synoptic stations for estimation of reference crop evapotranspiration by temperature-based methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4237-4255, September.
    10. Malik, Anurag & Jamei, Mehdi & Ali, Mumtaz & Prasad, Ramendra & Karbasi, Masoud & Yaseen, Zaher Mundher, 2022. "Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection," Agricultural Water Management, Elsevier, vol. 272(C).
    11. P. Attarod & M. Aoki & V. Bayramzadeh, 2009. "Measurements of the actual evapotranspiration and crop coefficients of summer and winter seasons crops in Japan," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 55(3), pages 121-127.
    12. Alexandris, S. & Kerkides, P. & Liakatas, A., 2006. "Daily reference evapotranspiration estimates by the "Copais" approach," Agricultural Water Management, Elsevier, vol. 82(3), pages 371-386, April.
    13. Xiang, Keyu & Li, Yi & Horton, Robert & Feng, Hao, 2020. "Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review," Agricultural Water Management, Elsevier, vol. 232(C).
    14. Dehghanisanij, H. & Agassi, M. & Anyoji, H. & Yamamoto, T. & Inoue, M. & Eneji, A.E., 2006. "Improvement of saline water use under drip irrigation system," Agricultural Water Management, Elsevier, vol. 85(3), pages 233-242, October.
    15. Landeras, Gorka & Ortiz-Barredo, Amaia & López, Jose Javier, 2008. "Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain)," Agricultural Water Management, Elsevier, vol. 95(5), pages 553-565, May.
    16. Chatzithomas, C.D. & Alexandris, S.G., 2015. "Solar radiation and relative humidity based, empirical method, to estimate hourly reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 152(C), pages 188-197.
    17. Yang, Yang & Luo, Yufeng & Wu, Conglin & Zheng, Hezhen & Zhang, Lei & Cui, Yuanlai & Sun, Ningning & Wang, Li, 2019. "Evaluation of six equations for daily reference evapotranspiration estimating using public weather forecast message for different climate regions across China," Agricultural Water Management, Elsevier, vol. 222(C), pages 386-399.
    18. Cruz-Blanco, M. & Lorite, I.J. & Santos, C., 2014. "An innovative remote sensing based reference evapotranspiration method to support irrigation water management under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 131(C), pages 135-145.
    19. M. Majidi & A. Alizadeh & M. Vazifedoust & A. Farid & T. Ahmadi, 2015. "Analysis of the Effect of Missing Weather Data on Estimating Daily Reference Evapotranspiration Under Different Climatic Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2107-2124, May.
    20. Abolfazl Mosaedi & Hamid Zare Abyaneh & Mohammad Ghabaei Sough & S. Samadi, 2015. "Quantifying Changes in Reconnaissance Drought Index using Equiprobability Transformation Function," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2451-2469, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:84:y:2006:i:1-2:p:123-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.