IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i10d10.1007_s11269-022-03229-7.html
   My bibliography  Save this article

Definition of Extreme Rainfall Events and Design of Rainfall Based on the Copula Function

Author

Listed:
  • Changyan Yin

    (Zhengzhou University)

  • Jiayi Wang

    (Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission)

  • Xin Yu

    (Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission)

  • Yong Li

    (Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission)

  • Denghua Yan

    (Zhengzhou University)

  • Shengqi Jian

    (Zhengzhou University)

Abstract

Extreme rainfall has changed in frequency and intensity as a result of climate change, and its impact on nature and society is far greater than that of rainfall change. Scientifically defining extreme rainfall events and obtaining the design rainfall is of great significance to analyze the impact of climate change on extreme precipitation events. Existing definitions of extreme precipitation events have usually focused on rainfall amounts at fixed durations rather than complete events with variable durations. Using sub-daily precipitation and runoff data covering 1971–2018 from 17 stations over the Jingle sub-basin, we constructed an appropriate copula function to define extreme persistent rainfall events under bivariate analysis and obtained the rainfall process of the designed rainfall under different return periods. The results showed that (1) the joint distribution based on Copula was more accurate than the traditional univariate probability methods for identifying extreme rainfall events with a threshold of 90%. (2) The Copula joint distribution established in the basin can well calculate the designed extreme rainfall under the return periods of 100 a, 50 a, 30 a, 25 a, 10 a and 5 a. (3) The rainfall intensity duration model had a good simulation effect on the rainfall intensity duration distribution of the basin.

Suggested Citation

  • Changyan Yin & Jiayi Wang & Xin Yu & Yong Li & Denghua Yan & Shengqi Jian, 2022. "Definition of Extreme Rainfall Events and Design of Rainfall Based on the Copula Function," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3759-3778, August.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:10:d:10.1007_s11269-022-03229-7
    DOI: 10.1007/s11269-022-03229-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03229-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03229-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christoph Schär & Nikolina Ban & Erich M. Fischer & Jan Rajczak & Jürg Schmidli & Christoph Frei & Filippo Giorgi & Thomas R. Karl & Elizabeth J. Kendon & Albert M. G. Klein Tank & Paul A. O’Gorman & , 2016. "Percentile indices for assessing changes in heavy precipitation events," Climatic Change, Springer, vol. 137(1), pages 201-216, July.
    2. Shahab Shaffie & GholamAli Mozaffari & Younes Khosravi, 2019. "Determination of extreme precipitation threshold and analysis of its effective patterns (case study: west of Iran)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 857-878, November.
    3. Bing-Chen Jhong & Ching-Pin Tung, 2018. "Evaluating Future Joint Probability of Precipitation Extremes with a Copula-Based Assessing Approach in Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4253-4274, October.
    4. Chong Meng & Siyang Zhou & Wei Li, 2021. "An Optimization Model for Water Management under the Dual Constraints of Water Pollution and Water Scarcity in the Fenhe River Basin, North China," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    5. Mohammad Nazeri Tahroudi & Yousef Ramezani & Carlo De Michele & Rasoul Mirabbasi, 2020. "A New Method for Joint Frequency Analysis of Modified Precipitation Anomaly Percentage and Streamflow Drought Index Based on the Conditional Density of Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4217-4231, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junyao Zhang & Ning Yao & Yi Li & Feng Li & Bakhtiyor Pulatov, 2022. "Effects of Different Socioeconomic Development Levels on Extreme Precipitation Events in Mainland China," Sustainability, MDPI, vol. 14(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bing-Chen Jhong & Jung Huang & Ching-Pin Tung, 2019. "Spatial Assessment of Climate Risk for Investigating Climate Adaptation Strategies by Evaluating Spatial-Temporal Variability of Extreme Precipitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3377-3400, August.
    2. Zahra Sadat Hosseini & Mahnoosh Moghaddasi & Shahla Paimozd, 2023. "Simultaneous Monitoring of Different Drought Types Using Linear and Nonlinear Combination Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1125-1151, February.
    3. Wu Zening & He Chentao & Huiliang Wang & Qian Zhang, 2020. "Reservoir Inflow Synchronization Analysis for Four Reservoirs on a Mainstream and its Tributaries in Flood Season Based on a Multivariate Copula Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2753-2770, July.
    4. Zahra Fahimirad & Nazanin Shahkarami, 2021. "The Impact of Climate Change on Hydro-Meteorological Droughts Using Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 3969-3993, September.
    5. Mohamad Khoirun Najib & Sri Nurdiati & Ardhasena Sopaheluwakan, 2022. "Multivariate fire risk models using copula regression in Kalimantan, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1263-1283, September.
    6. Hasrul Hazman Hasan & Siti Fatin Mohd Razali & Nur Shazwani Muhammad & Asmadi Ahmad, 2022. "Modified Hydrological Drought Risk Assessment Based on Spatial and Temporal Approaches," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    7. Mohammad Nazeri-Tahroudi & Yousef Ramezani & Carlo Michele & Rasoul Mirabbasi, 2022. "Bivariate Simulation of Potential Evapotranspiration Using Copula-GARCH Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 1007-1024, February.
    8. Wenhui Liu & Jidong Wu & Rumei Tang & Mengqi Ye & Jing Yang, 2020. "Daily Precipitation Threshold for Rainstorm and Flood Disaster in the Mainland of China: An Economic Loss Perspective," Sustainability, MDPI, vol. 12(1), pages 1-14, January.
    9. Kimia Naderi & Mahnoosh Moghaddasi & Ashkan shokri, 2022. "Drought Occurrence Probability Analysis Using Multivariate Standardized Drought Index and Copula Function Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2865-2888, June.
    10. Dragan Burić & Miroslav Doderović, 2022. "Trend of Percentile Climate Indices in Montenegro in the Period 1961–2020," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    11. Mohammad Nazeri Tahroudi & Rasoul Mirabbasi & Yousef Ramezani & Farshad Ahmadi, 2022. "Probabilistic Assessment of Monthly River Discharge using Copula and OSVR Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2027-2043, April.
    12. Jinping Zhang & Dong Wang & Yuhao Wang & Honglin Xiao & Muxiang Zeng, 2023. "Runoff Prediction Under Extreme Precipitation and Corresponding Meteorological Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3377-3394, July.
    13. Pinto, Bruno Chaves Morone & Fulginiti, Lilyan E. & Perrin, Richard K., 2022. "Tradeoff Between Irrigated Land Area And Counties’ Revenues In The High Plains Aquifer," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322391, Agricultural and Applied Economics Association.
    14. Ting Wei & Songbai Song, 2022. "Comparison of Frequency Calculation Methods for Precipitation Series Containing Zero Values," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 527-550, January.
    15. Goyal, Manish Kumar & Gupta, Anil Kumar & Jha, Srinidhi & Rakkasagi, Shivukumar & Jain, Vijay, 2022. "Climate change impact on precipitation extremes over Indian cities: Non-stationary analysis," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    16. Yousef Ghavidel & Farzaneh Jafari Hombari, 2020. "Synoptic analysis of unexampled super-heavy rainfall on April 1, 2019, in west of Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1567-1580, November.
    17. Zahra Afzali-Gorouh & Alireza Faridhosseini & Bahram Bakhtiari & Abolfazl Mosaedi & Nasrin Salehnia, 2022. "Monitoring and projection of climate change impact on 24-h probable maximum precipitation in the Southeast of Caspian Sea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 77-99, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:10:d:10.1007_s11269-022-03229-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.