IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i6d10.1007_s11269-020-02534-3.html
   My bibliography  Save this article

Flood Inundation Mapping and Impact Assessment Using Multi-Temporal Optical and SAR Satellite Data: a Case Study of 2017 Flood in Darbhanga District, Bihar, India

Author

Listed:
  • Gaurav Tripathi

    (Central University of Jharkhand)

  • Arvind Chandra Pandey

    (Central University of Jharkhand)

  • Bikash Ranjan Parida

    (Central University of Jharkhand)

  • Amit Kumar

    (Central University of Jharkhand)

Abstract

Flooding is a recurrent hazard in east Gangetic plains, largely on account of natural factors that pose risks to life and property. Bagmati and Burhi Gandak rivers draining parts of North Bihar causes substantial flooding owing to higher rainfall. This comprehensive study was carried out to map near real-time flood inundation using multi-temporal Sentinel-1A (SAR) and Moderate-resolution Imaging Spectroradiometer Near Real-Time (MODIS NRT) flood data (Optical and 3-day composite) over Darbhanga district of North Bihar during August and September 2017. Floodwater pixels were extracted using the binarization technique, wherein the threshold was applied as −22.5, −23.4, −23.8 and − 22.7 over VH polarization image. The key results revealed that during peak flooding stage (23rd August), 13% of areas were submerged based on SAR data, whereas overestimation by >20% was estimated using MODIS data. As shown in the composite flood inundated map, the inundated patches are quite similar in both the optical and SAR based data. Notably, there were higher flood patches observed in the central, northern, and western parts of the district due to the presence of more water channels in those regions. Our findings suggested that agriculture patches of ~392 sq.km area were inundated due to flood followed by vegetation clutters (16.07 sq.km) and urban (8.46 sq.km). These results indicated the impact of floodwater on agriculture and urban patches. These findings are crucial for policymakers to assess flood impacts. It can be inferred that flood prognosis using SAR data will lead to spatial accuracy and can be improved when coupling with various hydro-meteorological parameters and hydrological models.

Suggested Citation

  • Gaurav Tripathi & Arvind Chandra Pandey & Bikash Ranjan Parida & Amit Kumar, 2020. "Flood Inundation Mapping and Impact Assessment Using Multi-Temporal Optical and SAR Satellite Data: a Case Study of 2017 Flood in Darbhanga District, Bihar, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1871-1892, April.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:6:d:10.1007_s11269-020-02534-3
    DOI: 10.1007/s11269-020-02534-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02534-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02534-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar Gaurav & R. Sinha & P. Panda, 2011. "The Indus flood of 2010 in Pakistan: a perspective analysis using remote sensing data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1815-1826, December.
    2. Romulus Costache, 2019. "Flood Susceptibility Assessment by Using Bivariate Statistics and Machine Learning Models - A Useful Tool for Flood Risk Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3239-3256, July.
    3. Xinyu Wan & Qingyan Yang & Peng Jiang & Ping’an Zhong, 2019. "A Hybrid Model for Real-Time Probabilistic Flood Forecasting Using Elman Neural Network with Heterogeneity of Error Distributions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 4027-4050, September.
    4. Ashraf Dewan & M. Islam & T. Kumamoto & M. Nishigaki, 2007. "Evaluating Flood Hazard for Land-Use Planning in Greater Dhaka of Bangladesh Using Remote Sensing and GIS Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1601-1612, September.
    5. A. Pandey & Suraj Singh & M. Nathawat, 2010. "Waterlogging and flood hazards vulnerability and risk assessment in Indo Gangetic plain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(2), pages 273-289, November.
    6. Ji-Jian Lian & Xin-Yu Guo & Chao Ma & Kui Xu, 2019. "Optimal Reservoir Flood Control Operation Using a Hedging Model and Considering the Near-Field Vibrations Induced by Flood Release," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2645-2663, June.
    7. Samuel Brody & Russell Blessing & Antonia Sebastian & Philip Bedient, 2014. "Examining the impact of land use/land cover characteristics on flood losses," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 57(8), pages 1252-1265, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arvind Chandra Pandey & Kavita Kaushik & Bikash Ranjan Parida, 2022. "Google Earth Engine for Large-Scale Flood Mapping Using SAR Data and Impact Assessment on Agriculture and Population of Ganga-Brahmaputra Basin," Sustainability, MDPI, vol. 14(7), pages 1-22, April.
    2. Fatemeh Yavari & Seyyed Ali Salehi Neyshabouri & Jafar Yazdi & Amir Molajou & Adam Brysiewicz, 2022. "A Novel Framework for Urban Flood damage Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1991-2011, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carmine Gambardella & Rosaria Parente & Anna Scotto di Santolo & Giuseppe Ciaburro, 2022. "New Digital Field of Drawing and Survey for the Automatic Identification of Debris Accumulation in Flooded Areas," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    2. Bushra Khalid & Bueh Cholaw & Débora Souza Alvim & Shumaila Javeed & Junaid Aziz Khan & Muhammad Asif Javed & Azmat Hayat Khan, 2018. "Riverine flood assessment in Jhang district in connection with ENSO and summer monsoon rainfall over Upper Indus Basin for 2010," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 971-993, June.
    3. Huali Chen & Yuka Ito & Marie Sawamukai & Tomochika Tokunaga, 2015. "Flood hazard assessment in the Kujukuri Plain of Chiba Prefecture, Japan, based on GIS and multicriteria decision analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 105-120, August.
    4. Subhankar Chakraborty & Sutapa Mukhopadhyay, 2019. "Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): application in Coochbehar district of West Bengal, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 247-274, October.
    5. Nizamud Din Essa & Muneeb Aamir, 2019. "Analysis of Flood Damage Assessment through WorldView-2, Quick Bird and Multispectral Satellite Imagery in Southern Punjab, Pakistan," International Journal of Innovations in Science & Technology, 50sea, vol. 1(3), pages 120-139, July.
    6. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    7. Liyin Shen & Chenyang Shuai & Liudan Jiao & Yongtao Tan & Xiangnan Song, 2016. "A Global Perspective on the Sustainable Performance of Urbanization," Sustainability, MDPI, vol. 8(8), pages 1-16, August.
    8. Animesh Gain & Vahid Mojtahed & Claudio Biscaro & Stefano Balbi & Carlo Giupponi, 2015. "An integrated approach of flood risk assessment in the eastern part of Dhaka City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1499-1530, December.
    9. Rita Tufano & Luigi Guerriero & Mariagiulia Annibali Corona & Giuseppe Cianflone & Diego Di Martire & Fabio Ietto & Alessandro Novellino & Concetta Rispoli & Claudia Zito & Domenico Calcaterra, 2023. "Multiscenario flood hazard assessment using probabilistic runoff hydrograph estimation and 2D hydrodynamic modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1029-1051, March.
    10. Welsch, David M. & Winden, Matthew W. & Zimmer, David M., 2022. "The effect of flood mitigation spending on flood damage: Accounting for dynamic feedback," Ecological Economics, Elsevier, vol. 192(C).
    11. Fahad, Shah & Wang, Jing & Hu, Guangyin & Wang, Hui & Yang, Xiaoying & Shah, Ashfaq Ahmad & Huong, Nguyen Thi Lan & Bilal, Arshad, 2018. "Empirical analysis of factors influencing farmers crop insurance decisions in Pakistan: Evidence from Khyber Pakhtunkhwa province," Land Use Policy, Elsevier, vol. 75(C), pages 459-467.
    12. Meiling Zhou & Xiuli Feng & Kaikai Liu & Chi Zhang & Lijian Xie & Xiaohe Wu, 2021. "An Alternative Risk Assessment Model of Urban Waterlogging: A Case Study of Ningbo City," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    13. Jiun-Huei Jang & Kun-Fang Lee & Jin-Cheng Fu, 2022. "Improving River-Stage Forecasting Using Hybrid Models Based on the Combination of Multiple Additive Regression Trees and Runge–Kutta Schemes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 1123-1140, February.
    14. Rui-Song Quan, 2014. "Rainstorm waterlogging risk assessment in central urban area of Shanghai based on multiple scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1569-1585, September.
    15. Md. Nawrose Fatemi & Seth Asare Okyere & Stephen Kofi Diko & Michihiro Kita & Motoki Shimoda & Shigeki Matsubara, 2020. "Physical Vulnerability and Local Responses to Flood Damage in Peri-Urban Areas of Dhaka, Bangladesh," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    16. Pallavi Tomar & Suraj Kumar Singh & Shruti Kanga & Gowhar Meraj & Nikola Kranjčić & Bojan Đurin & Amitanshu Pattanaik, 2021. "GIS-Based Urban Flood Risk Assessment and Management—A Case Study of Delhi National Capital Territory (NCT), India," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    17. Pankaj Mani & Chandranath Chatterjee & Rakesh Kumar, 2014. "Flood hazard assessment with multiparameter approach derived from coupled 1D and 2D hydrodynamic flow model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1553-1574, January.
    18. Apurba Das & Rajesh Sah & Nabajit Hazarika, 2012. "Bankline change and the facets of riverine hazards in the floodplain of Subansiri–Ranganadi Doab, Brahmaputra Valley, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1015-1028, November.
    19. Bandi Aneesha Satya & Meshapam Shashi & Deva Pratap, 2019. "A geospatial approach to flash flood hazard mapping in the city of Warangal, Telangana, India," Environmental & Socio-economic Studies, Sciendo, vol. 7(3), pages 1-13, September.
    20. Huali Chen & Yuka Ito & Marie Sawamukai & Tao Su & Tomochika Tokunaga, 2016. "Spatial and temporal changes in flood hazard potential at coastal lowland area: a case study in the Kujukuri Plain, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1513-1527, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:6:d:10.1007_s11269-020-02534-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.