IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v11y2020i2d10.1007_s13198-020-00974-z.html
   My bibliography  Save this article

Dynamic programming integrated particle swarm optimization algorithm for reservoir operation

Author

Listed:
  • Bilal

    (Indian Institute of Technology Roorkee)

  • Deepti Rani

    (National Institute of Hydrology Roorkee)

  • Millie Pant

    (Indian Institute of Technology Roorkee)

  • S. K. Jain

    (National Institute of Hydrology Roorkee)

Abstract

The present study suggests an integrated approach for determining the optimal release policy for the Mula reservoir situated at the Godavari basin, India. The proposed integrated algorithm named DP-PSO is a hybridization of Dynamic Programming (DP) and Particle Swarm Optimization (PSO). The reservoir operation problem is demonstrated in the form of a nonlinear optimization model subject to various constraints. Two case studies are considered. In the first case the efficiency of the proposed algorithm is tested on a small data set of 1 year and in the second case, data set taken is for 10 years. The results obtained are compared in terms of objective function value as well CPU time for performance evaluation of the integrated methods.

Suggested Citation

  • Bilal & Deepti Rani & Millie Pant & S. K. Jain, 2020. "Dynamic programming integrated particle swarm optimization algorithm for reservoir operation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 515-529, April.
  • Handle: RePEc:spr:ijsaem:v:11:y:2020:i:2:d:10.1007_s13198-020-00974-z
    DOI: 10.1007/s13198-020-00974-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-020-00974-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-020-00974-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Kumar & Falguni Baliarsingh, 2003. "Folded Dynamic Programming for Optimal Operation of Multireservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 17(5), pages 337-353, October.
    2. V. Jothiprakash & Ganesan Shanthi, 2006. "Single Reservoir Operating Policies Using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(6), pages 917-929, December.
    3. Bahram Malekmohammadi & Banafsheh Zahraie & Reza Kerachian, 2010. "A real-time operation optimization model for flood management in river-reservoir systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(3), pages 459-482, June.
    4. Onur Hınçal & A. Altan-Sakarya & A. Metin Ger, 2011. "Optimization of Multireservoir Systems by Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1465-1487, March.
    5. Fang-Fang Li & Jia-Hua Wei & Xu-Dong Fu & Xin-Yu Wan, 2012. "An Effective Approach to Long-Term Optimal Operation of Large-Scale Reservoir Systems: Case Study of the Three Gorges System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4073-4090, November.
    6. M. Reddy & D. Kumar, 2006. "Optimal Reservoir Operation Using Multi-Objective Evolutionary Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(6), pages 861-878, December.
    7. Deepti Rani & Maria Moreira, 2010. "Simulation–Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1107-1138, April.
    8. Abbas Afshar & Nasim Shojaei & Mahdi Sagharjooghifarahani, 2013. "Multiobjective Calibration of Reservoir Water Quality Modeling Using Multiobjective Particle Swarm Optimization (MOPSO)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1931-1947, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omar A. de la Cruz Courtois & Maritza Liliana Arganis Juárez & Delva Guichard Romero, 2021. "Simulated Optimal Operation Policies of a Reservoir System Obtained with Continuous Functions Using Synthetic Inflows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2249-2263, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bilal & Deepti Rani & Millie Pant & S. K. Jain, 0. "Dynamic programming integrated particle swarm optimization algorithm for reservoir operation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-15.
    2. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    3. Deepti Rani & Maria Moreira, 2010. "Simulation–Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1107-1138, April.
    4. Jatin Anand & Ashvani Kumar Gosain & Rakesh Khosa, 2018. "Optimisation of Multipurpose Reservoir Operation by Coupling Soil and Water Assessment Tool (SWAT) and Genetic Algorithm for Optimal Operating Policy (Case Study: Ganga River Basin)," Sustainability, MDPI, vol. 10(5), pages 1-20, May.
    5. Md. Hossain & A. El-shafie, 2013. "Intelligent Systems in Optimizing Reservoir Operation Policy: A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3387-3407, July.
    6. Sabah Fayaed & Ahmed El-Shafie & Othman Jaafar, 2013. "Integrated Artificial Neural Network (ANN) and Stochastic Dynamic Programming (SDP) Model for Optimal Release Policy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3679-3696, August.
    7. Panagiotis I. Bakanos & Konstantinos L. Katsifarakis, 2020. "Optimizing Current and Future Hydroelectric Energy Production and Water Uses of the Complex Multi-Reservoir System in the Aliakmon River, Greece," Energies, MDPI, vol. 13(24), pages 1-23, December.
    8. Behrang Beiranvand & Parisa-Sadat Ashofteh, 2023. "A Systematic Review of Optimization of Dams Reservoir Operation Using the Meta-heuristic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3457-3526, July.
    9. Majid Montaseri & Mahdi Hesami Afshar & Omid Bozorg-Haddad, 2015. "Development of Simulation-Optimization Model (MUSIC-GA) for Urban Stormwater Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4649-4665, October.
    10. Mojtaba Moravej & Seyed-Mohammad Hosseini-Moghari, 2016. "Large Scale Reservoirs System Operation Optimization: the Interior Search Algorithm (ISA) Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3389-3407, August.
    11. D. Nagesh Kumar & Falguni Baliarsingh & K. Srinivasa Raju, 2010. "Optimal Reservoir Operation for Flood Control Using Folded Dynamic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1045-1064, April.
    12. Fang-Fang Li & Jun Qiu, 2015. "Multi-Objective Reservoir Optimization Balancing Energy Generation and Firm Power," Energies, MDPI, vol. 8(7), pages 1-15, July.
    13. Vartika Paliwal & Aniruddha D. Ghare & Ashwini B. Mirajkar & Neeraj Dhanraj Bokde & Andrés Elías Feijóo Lorenzo, 2019. "Computer Modeling for the Operation Optimization of Mula Reservoir, Upper Godavari Basin, India, Using the Jaya Algorithm," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    14. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    15. V. Jothiprakash & R. Arunkumar, 2013. "Optimization of Hydropower Reservoir Using Evolutionary Algorithms Coupled with Chaos," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1963-1979, May.
    16. S. Ashbolt & S. Maheepala & B. Perera, 2014. "A Framework for Short-term Operational Planning for Water Grids," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2367-2380, June.
    17. A. Adeloye & B.-S. Soundharajan & C. Ojha & R. Remesan, 2016. "Effect of Hedging-Integrated Rule Curves on the Performance of the Pong Reservoir (India) During Scenario-Neutral Climate Change Perturbations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 445-470, January.
    18. Hui Qin & Jianzhong Zhou & Youlin Lu & Yinghai Li & Yongchuan Zhang, 2010. "Multi-objective Cultured Differential Evolution for Generating Optimal Trade-offs in Reservoir Flood Control Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2611-2632, September.
    19. Ahmad, Shahryar Khalique & Hossain, Faisal, 2020. "Maximizing energy production from hydropower dams using short-term weather forecasts," Renewable Energy, Elsevier, vol. 146(C), pages 1560-1577.
    20. Fuxing Wang & Oliver Saavedra Valeriano & Xinguo Sun, 2013. "Near Real-Time Optimization of Multi-Reservoir during Flood Season in the Fengman Basin of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4315-4335, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:11:y:2020:i:2:d:10.1007_s13198-020-00974-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.