IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i2d10.1007_s11269-019-02428-z.html
   My bibliography  Save this article

Developing a Model for Decision-Makers in Dynamic Modeling of Urban Water System Management

Author

Listed:
  • Keivan Karimlou

    (Shahid Beheshti University)

  • Nemat Hassani

    (Shahid Beheshti University)

  • Abdollah Rashidi Mehrabadi

    (Shahid Beheshti University)

  • Mohammad Reza Nazari

    (Shahid Beheshti University, G.C.)

Abstract

Water managers may modify many components of urban water systems to minimize water shortage. Since each modification activity has its own positive and negative effects, it is necessary to define an appropriate procedure to predict the consequences of each action. As the parameters of urban water supply and demand system have internal relationships in the time domain, a dynamic model is needed to forecast the result of changes and select the best modification activity. Here the Vensim® is applied as a modeling tool to choose the most effective water management activities in Tehran province. It has been found that the annual increase rate of water tariff by 16.4% and assigning 4.5% of revenue on reducing non-revenue water may be the most effective demand management activity to reduce water shortage in Tehran province. It has also been revealed that, even by implementing the most effective demand management activities in Tehran, the amount of required water in the next 10 years is more than the sustainable capacity of its resources and activities like seawater desalination are inevitable to prevent unsustainable use of water sources.

Suggested Citation

  • Keivan Karimlou & Nemat Hassani & Abdollah Rashidi Mehrabadi & Mohammad Reza Nazari, 2020. "Developing a Model for Decision-Makers in Dynamic Modeling of Urban Water System Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 481-499, January.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:2:d:10.1007_s11269-019-02428-z
    DOI: 10.1007/s11269-019-02428-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02428-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02428-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Slobodan Simonovic & Hussam Fahmy & Amin El-Shorbagy, 1997. "The Use of Object-Oriented Modeling for Water Resources Planning in Egypt," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 11(4), pages 243-261, August.
    2. Kaveh Madani, 2014. "Water management in Iran: what is causing the looming crisis?," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 4(4), pages 315-328, December.
    3. Pour, Morteza Tahami & Kalashami, Mohammad Kavoosi, 2012. "Applying CVM for Economic Valuation of Drinking Water in Iran," International Journal of Agricultural Management and Development (IJAMAD), Iranian Association of Agricultural Economics, vol. 2(3).
    4. Ali Mirchi & Kaveh Madani & David Watkins & Sajjad Ahmad, 2012. "Synthesis of System Dynamics Tools for Holistic Conceptualization of Water Resources Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2421-2442, July.
    5. Qianjin Dong & Xu Zhang & Yalin Chen & Debin Fang, 2019. "Dynamic Management of a Water Resources-Socioeconomic-Environmental System Based on Feedbacks Using System Dynamics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2093-2108, April.
    6. Pao-Shan Yu & Tao-Chang Yang & Chen-Min Kuo & Yi-Tai Wang, 2014. "A Stochastic Approach for Seasonal Water-Shortage Probability Forecasting Based on Seasonal Weather Outlook," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3905-3920, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yizhong Chen & Hongwei Lu & Jing Li & Pengdong Yan & He Peng, 2021. "Multi-Level Decision-Making for Inter-Regional Water Resources Management with Water Footprint Analysis and Shared Socioeconomic Pathways," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 481-503, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin L. Turner & Hector M. Menendez & Roger Gates & Luis O. Tedeschi & Alberto S. Atzori, 2016. "System Dynamics Modeling for Agricultural and Natural Resource Management Issues: Review of Some Past Cases and Forecasting Future Roles," Resources, MDPI, vol. 5(4), pages 1-24, November.
    2. Jeong, Hanseok & Adamowski, Jan, 2016. "A system dynamics based socio-hydrological model for agricultural wastewater reuse at the watershed scale," Agricultural Water Management, Elsevier, vol. 171(C), pages 89-107.
    3. Ali Akhavan & Paulo Gonçalves, 2021. "Managing the trade‐off between groundwater resources and large‐scale agriculture: the case of pistachio production in Iran," System Dynamics Review, System Dynamics Society, vol. 37(2-3), pages 155-196, April.
    4. Yong S. Nyam & Julius H. Kotir & Andries J. Jordaan & Abiodun A. Ogundeji & Adetoso A. Adetoro & Israel R. Orimoloye, 2020. "Towards Understanding and Sustaining Natural Resource Systems through the Systems Perspective: A Systematic Evaluation," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
    5. Alireza Gohari & Ali Mirchi & Kaveh Madani, 2017. "System Dynamics Evaluation of Climate Change Adaptation Strategies for Water Resources Management in Central Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1413-1434, March.
    6. Ali Sardar Shahraki & Javad Shahraki & Seyed Arman Hashemi Monfared, 2021. "An integrated model for economic assessment of environmental scenarios for dust stabilization and sustainable flora–fauna ecosystem in international Hamoun wetland," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 947-967, January.
    7. Nazemi, Neda & Foley, Rider W. & Louis, Garrick & Keeler, Lauren Withycombe, 2020. "Divergent agricultural water governance scenarios: The case of Zayanderud basin, Iran," Agricultural Water Management, Elsevier, vol. 229(C).
    8. Abduraupov, Rustam & Akhmadjanova, Gulmira & Ibragimov, Abdulla & Bala, B.K. & Sidique, Shaufique F. & Makhmudov, Miraziz & Angelina, Kim, 2022. "Modeling of water management for cotton production in Uzbekistan," Agricultural Water Management, Elsevier, vol. 265(C).
    9. Forough Jafary & Chris Bradley, 2018. "Groundwater Irrigation Management and the Existing Challenges from the Farmers’ Perspective in Central Iran," Land, MDPI, vol. 7(1), pages 1-21, January.
    10. Momeni, Marzieh & Zakeri, Zahra & Esfandiari, Mojtaba & Behzadian, Kourosh & Zahedi, Sina & Razavi, Vahid, 2019. "Comparative analysis of agricultural water pricing between Azarbaijan Provinces in Iran and the state of California in the US: A hydro-economic approach," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    11. Kazi Ali Tamaddun & Ajay Kalra & Sajjad Ahmad, 2019. "Spatiotemporal Variation in the Continental US Streamflow in Association with Large-Scale Climate Signals Across Multiple Spectral Bands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1947-1968, April.
    12. Walters, Jeffrey P. & Archer, David W. & Sassenrath, Gretchen F. & Hendrickson, John R. & Hanson, Jon D. & Halloran, John M. & Vadas, Peter & Alarcon, Vladimir J., 2016. "Exploring agricultural production systems and their fundamental components with system dynamics modelling," Ecological Modelling, Elsevier, vol. 333(C), pages 51-65.
    13. Muhammad Kamangar & Ozgur Kisi & Masoud Minaei, 2023. "Spatio-Temporal Analysis of Carbon Sequestration in Different Ecosystems of Iran and Its Relationship with Agricultural Droughts," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    14. Rossella Vito & Alessandro Pagano & Ivan Portoghese & Raffaele Giordano & Michele Vurro & Umberto Fratino, 2019. "Integrated Approach for Supporting Sustainable Water Resources Management of Irrigation Based on the WEFN Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1281-1295, March.
    15. Alireza Taghdisian & Sandra G. F. Bukkens & Mario Giampietro, 2022. "A Societal Metabolism Approach to Effectively Analyze the Water–Energy–Food Nexus in an Agricultural Transboundary River Basin," Sustainability, MDPI, vol. 14(15), pages 1-25, July.
    16. Angela Dikou, 2024. "Competence in Unsustainability Resolution—A New Paradigm," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
    17. Andreas Nicolaidis Lindqvist & Rickard Fornell & Thomas Prade & Linda Tufvesson & Sammar Khalil & Birgit Kopainsky, 2021. "Human-Water Dynamics and their Role for Seasonal Water Scarcity – a Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3043-3061, August.
    18. Yansong Zhang & Yujie Wei & Yu Mao, 2023. "Sustainability Assessment of Regional Water Resources in China Based on DPSIR Model," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    19. Guangyang Wu & Lanhai Li & Sajjad Ahmad & Xi Chen & Xiangliang Pan, 2013. "A Dynamic Model for Vulnerability Assessment of Regional Water Resources in Arid Areas: A Case Study of Bayingolin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3085-3101, June.
    20. Shiva Noori & Gijsbert Korevaar & Andrea Ramirez Ramirez, 2020. "Institutional Lens upon Industrial Symbiosis Dynamics: The case of Persian Gulf Mining and Metal Industries Special Economic Zone," Sustainability, MDPI, vol. 12(15), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:2:d:10.1007_s11269-019-02428-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.