IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v11y1997i4p243-261.html
   My bibliography  Save this article

The Use of Object-Oriented Modeling for Water Resources Planning in Egypt

Author

Listed:
  • Slobodan Simonovic
  • Hussam Fahmy
  • Amin El-Shorbagy

Abstract

Water problems are omnipresent and are already becoming a limiting factor in the development of many countries. Currently the balance between the available and required water in Egypt is fragile. Any movement away from the balancing point means either less ambitious economic development or depletion of the resources and degradation of the environment. The continuing revolution in computer hardware and software is expected to provide more insight into the water problems and to alleviate some of the future water crises. In this paper we have investigated potential benefits which can be accrued from the application of object-oriented modeling in water resources. Copyright Kluwer Academic Publishers 1997

Suggested Citation

  • Slobodan Simonovic & Hussam Fahmy & Amin El-Shorbagy, 1997. "The Use of Object-Oriented Modeling for Water Resources Planning in Egypt," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 11(4), pages 243-261, August.
  • Handle: RePEc:spr:waterr:v:11:y:1997:i:4:p:243-261
    DOI: 10.1023/A:1007988424353
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1007988424353
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1007988424353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin L. Turner & Hector M. Menendez & Roger Gates & Luis O. Tedeschi & Alberto S. Atzori, 2016. "System Dynamics Modeling for Agricultural and Natural Resource Management Issues: Review of Some Past Cases and Forecasting Future Roles," Resources, MDPI, vol. 5(4), pages 1-24, November.
    2. M. Yurdusev & P. O'connell, 2005. "Environmentally-Sensitive Water Resources Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(4), pages 375-397, August.
    3. Ramesh Teegavarapu & Slobodan Simonovic, 2014. "Simulation of Multiple Hydropower Reservoir Operations Using System Dynamics Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1937-1958, May.
    4. Ali Sardar Shahraki & Javad Shahraki & Seyed Arman Hashemi Monfared, 2021. "An integrated model for economic assessment of environmental scenarios for dust stabilization and sustainable flora–fauna ecosystem in international Hamoun wetland," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 947-967, January.
    5. Yong S. Nyam & Julius H. Kotir & Andries J. Jordaan & Abiodun A. Ogundeji & Adetoso A. Adetoro & Israel R. Orimoloye, 2020. "Towards Understanding and Sustaining Natural Resource Systems through the Systems Perspective: A Systematic Evaluation," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
    6. Jeong, Hanseok & Adamowski, Jan, 2016. "A system dynamics based socio-hydrological model for agricultural wastewater reuse at the watershed scale," Agricultural Water Management, Elsevier, vol. 171(C), pages 89-107.
    7. Deepti Rani & Maria Moreira, 2010. "Simulation–Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1107-1138, April.
    8. Wichelns, Dennis, 2001. "The role of `virtual water' in efforts to achieve food security and other national goals, with an example from Egypt," Agricultural Water Management, Elsevier, vol. 49(2), pages 131-151, July.
    9. Chao-Chung Yang & Liang-Cheng Chang & Chih-Chao Ho, 2008. "Application of System Dynamics with Impact Analysis to Solve the Problem of Water Shortages in Taiwan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(11), pages 1561-1577, November.
    10. Wichelns, Dennis, 2002. "Economic analysis of water allocation policies regarding Nile River water in Egypt," Agricultural Water Management, Elsevier, vol. 52(2), pages 155-175, January.
    11. Amgad Elmahdi & Hector Malano & Teri Etchells, 2007. "Using system dynamics to model water-reallocation," Environment Systems and Decisions, Springer, vol. 27(1), pages 3-12, March.
    12. Gohar, Abdelaziz A. & Ward, Frank A., 2010. "Gains from expanded irrigation water trading in Egypt: An integrated basin approach," Ecological Economics, Elsevier, vol. 69(12), pages 2535-2548, October.
    13. Mehri Abdi-Dehkordi & Omid Bozorg-Haddad & Abdolrahim Salavitabar & Sahar Mohammad-Azari & Erfan Goharian, 2021. "Development of flood mitigation strategies toward sustainable development," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2543-2567, September.
    14. Keivan Karimlou & Nemat Hassani & Abdollah Rashidi Mehrabadi & Mohammad Reza Nazari, 2020. "Developing a Model for Decision-Makers in Dynamic Modeling of Urban Water System Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 481-499, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:11:y:1997:i:4:p:243-261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.