Potential of Hybrid Data-Intelligence Algorithms for Multi-Station Modelling of Rainfall
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-019-02408-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sarita Gajbhiye Meshram & M. A. Ghorbani & Ravinesh C. Deo & Mahsa Hasanpour Kashani & Chandrashekhar Meshram & Vahid Karimi, 2019. "New Approach for Sediment Yield Forecasting with a Two-Phase Feedforward Neuron Network-Particle Swarm Optimization Model Integrated with the Gravitational Search Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2335-2356, May.
- Muhammad Al-Zahrani & Amin Abo-Monasar, 2015. "Urban Residential Water Demand Prediction Based on Artificial Neural Networks and Time Series Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3651-3662, August.
- Zaher Mundher Yaseen & Mazen Ismaeel Ghareb & Isa Ebtehaj & Hossein Bonakdari & Ridwan Siddique & Salim Heddam & Ali A. Yusif & Ravinesh Deo, 2018. "Rainfall Pattern Forecasting Using Novel Hybrid Intelligent Model Based ANFIS-FFA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 105-122, January.
- Seyed Akrami & Vahid Nourani & S. Hakim, 2014. "Development of Nonlinear Model Based on Wavelet-ANFIS for Rainfall Forecasting at Klang Gates Dam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2999-3018, August.
- Aman Mohammad Kalteh, 2019. "Modular Wavelet–Extreme Learning Machine: a New Approach for Forecasting Daily Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3831-3849, September.
- Sinan Jasim Hadi & Mustafa Tombul, 2018. "Forecasting Daily Streamflow for Basins with Different Physical Characteristics through Data-Driven Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3405-3422, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Karbasi, Masoud & Jamei, Mehdi & Malik, Anurag & Kisi, Ozgur & Yaseen, Zaher Mundher, 2023. "Multi-steps drought forecasting in arid and humid climate environments: Development of integrative machine learning model," Agricultural Water Management, Elsevier, vol. 281(C).
- Maryam Rahimzad & Alireza Moghaddam Nia & Hosam Zolfonoon & Jaber Soltani & Ali Danandeh Mehr & Hyun-Han Kwon, 2021. "Performance Comparison of an LSTM-based Deep Learning Model versus Conventional Machine Learning Algorithms for Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4167-4187, September.
- Manish Kumar & Anuradha Kumari & Daniel Prakash Kushwaha & Pravendra Kumar & Anurag Malik & Rawshan Ali & Alban Kuriqi, 2020. "Estimation of Daily Stage–Discharge Relationship by Using Data-Driven Techniques of a Perennial River, India," Sustainability, MDPI, vol. 12(19), pages 1-21, September.
- Tao, Hai & Alawi, Omer A. & Kamar, Haslinda Mohamed & Nafea, Ahmed Adil & AL-Ani, Mohammed M. & Abba, Sani I. & Salami, Babatunde Abiodun & Oudah, Atheer Y. & Mohammed, Mustafa K.A., 2024. "Development of integrative data intelligence models for thermo-economic performances prediction of hybrid organic rankine plants," Energy, Elsevier, vol. 292(C).
- Jamshid Piri & Mohammad Abdolahipour & Behrooz Keshtegar, 2023. "Advanced Machine Learning Model for Prediction of Drought Indices using Hybrid SVR-RSM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 683-712, January.
- Bassam Tawabini & Mohamed A. Yassin & Mohammed Benaafi & John Adedapo Adetoro & Abdulaziz Al-Shaibani & S. I. Abba, 2022. "Spatiotemporal Variability Assessment of Trace Metals Based on Subsurface Water Quality Impact Integrated with Artificial Intelligence-Based Modeling," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kaloop, Mosbeh R. & Bardhan, Abidhan & Kardani, Navid & Samui, Pijush & Hu, Jong Wan & Ramzy, Ahmed, 2021. "Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- Yin, Juan & Deng, Zhen & Ines, Amor V.M. & Wu, Junbin & Rasu, Eeswaran, 2020. "Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM)," Agricultural Water Management, Elsevier, vol. 242(C).
- Kanhua Yu & Lili Liu & Zhe Chen, 2021. "An Improved Slime Mould Algorithm for Demand Estimation of Urban Water Resources," Mathematics, MDPI, vol. 9(12), pages 1-26, June.
- Dália Loureiro & Aisha Mamade & Marta Cabral & Conceição Amado & Dídia Covas, 2016. "A Comprehensive Approach for Spatial and Temporal Water Demand Profiling to Improve Management in Network Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3443-3457, August.
- Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
- Predrag M Milanovic & Snezana B Stankovic & Milada Novakovic & Dragana Grujic & Mirjana Kostic & Jovana Z Milanovic, 2020. "Development of the automated software and device for determination of wicking in textiles using open-source tools," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-23, November.
- Md Mahmudul Haque & Amaury Souza & Ataur Rahman, 2017. "Water Demand Modelling Using Independent Component Regression Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 299-312, January.
- Fugang LI & Guangwen MA & Shijun CHEN & Weibin HUANG, 2021. "An Ensemble Modeling Approach to Forecast Daily Reservoir Inflow Using Bidirectional Long- and Short-Term Memory (Bi-LSTM), Variational Mode Decomposition (VMD), and Energy Entropy Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2941-2963, July.
- El Hassene Ait Mokhtar & Radouane Laggoune & Alaa Chateauneuf, 2016. "Utility-Based Maintenance Optimization for Complex Water-Distribution Systems Using Bayesian Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4153-4170, September.
- Sinan Jasim Hadi & Mustafa Tombul, 2018. "Forecasting Daily Streamflow for Basins with Different Physical Characteristics through Data-Driven Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3405-3422, August.
- Salah L. Zubaidi & Sandra Ortega-Martorell & Patryk Kot & Rafid M. Alkhaddar & Mawada Abdellatif & Sadik K. Gharghan & Maytham S. Ahmed & Khalid Hashim, 2020. "A Method for Predicting Long-Term Municipal Water Demands Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1265-1279, February.
- Dong-Her Shih & Ching-Hsien Liao & Ting-Wei Wu & Huan-Shuo Chang & Ming-Hung Shih, 2022. "WSI: A New Early Warning Water Survival Index for the Domestic Water Demand," Mathematics, MDPI, vol. 10(23), pages 1-19, November.
- Maryam Rahimzad & Alireza Moghaddam Nia & Hosam Zolfonoon & Jaber Soltani & Ali Danandeh Mehr & Hyun-Han Kwon, 2021. "Performance Comparison of an LSTM-based Deep Learning Model versus Conventional Machine Learning Algorithms for Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4167-4187, September.
- Magnus Moglia & Christian Andi Nygaard, 2024. "The Responsiveness of Urban Water Demand to Working from Home Intensity," Sustainability, MDPI, vol. 16(5), pages 1-21, February.
- Seyed Ahmad Soleymani & Shidrokh Goudarzi & Mohammad Hossein Anisi & Wan Haslina Hassan & Mohd Yamani Idna Idris & Shahaboddin Shamshirband & Noorzaily Mohamed Noor & Ismail Ahmedy, 2016. "A Novel Method to Water Level Prediction using RBF and FFA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3265-3283, July.
- R. Sarma & S. K. Singh, 2022. "A Comparative Study of Data-driven Models for Groundwater Level Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2741-2756, June.
- Ashish Kumar & Pravendra Kumar & Vijay Kumar Singh, 2019. "Evaluating Different Machine Learning Models for Runoff and Suspended Sediment Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1217-1231, February.
- Samad Emamgholizadeh & Khadije Moslemi & Gholamhosein Karami, 2014. "Prediction the Groundwater Level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5433-5446, December.
- Alireza Farrokhi & Saeed Farzin & Sayed-Farhad Mousavi, 2020. "A New Framework for Evaluation of Rainfall Temporal Variability through Principal Component Analysis, Hybrid Adaptive Neuro-Fuzzy Inference System, and Innovative Trend Analysis Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3363-3385, August.
- Saeid Mehdizadeh, 2020. "Using AR, MA, and ARMA Time Series Models to Improve the Performance of MARS and KNN Approaches in Monthly Precipitation Modeling under Limited Climatic Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 263-282, January.
More about this item
Keywords
Artificial intelligence; Hammerstein-Weiner; Rainfall; Time series modelling; Vu Gia-Thu Bon river;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:15:d:10.1007_s11269-019-02408-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.