IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i4p2192-d749648.html
   My bibliography  Save this article

Spatiotemporal Variability Assessment of Trace Metals Based on Subsurface Water Quality Impact Integrated with Artificial Intelligence-Based Modeling

Author

Listed:
  • Bassam Tawabini

    (Interdisciplinary Research Center for Membrane and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
    College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

  • Mohamed A. Yassin

    (Interdisciplinary Research Center for Membrane and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

  • Mohammed Benaafi

    (Interdisciplinary Research Center for Membrane and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

  • John Adedapo Adetoro

    (Centre for Environmental Management and Control, University of Nigeria, Nsukka 400241, Nigeria)

  • Abdulaziz Al-Shaibani

    (Ministry of Environment, Water, and Agriculture, Riyadh 11195, Saudi Arabia)

  • S. I. Abba

    (Interdisciplinary Research Center for Membrane and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

Abstract

Increasing anthropogenic emissions due to rapid industrialization have triggered environmental pollution and pose a threat to the well-being of the ecosystem. In this study, the first scenario involved the spatio-temporal assessment of topsoil contamination with trace metals in the Dammam region, and samples were taken from 2 zones: the industrial (ID), and the agricultural (AG) area. For this purpose, more than 130 spatially distributed samples of topsoil were collected from residential, industrial, and agricultural areas. Inductively coupled plasma—optical emission spectroscopy (ICP-OES)—was used to analyze the samples for various trace metals. The second scenario involved the creation of different artificial intelligence (AI) models, namely an artificial neural network (ANN) and a support vector regression (SVR), for the estimation of zinc (Zn), copper (Cu), chromium (Cr), and lead (Pb) using feature-based input selection. The experimental outcomes depicted that the average concentration levels of HMs were as follows: Chromium (Cr) (31.79 ± 37.9 mg/kg), Copper (Cu) (6.76 ± 12.54 mg/kg), Lead (Pb) (6.34 ± 14.55 mg/kg), and Zinc (Zn) (23.44 ± 84.43 mg/kg). The modelling accuracy, based on different evaluation criteria, showed that agricultural and industrial stations showed performance merit with goodness-of-fit ranges of 51–91% and 80–99%, respectively. This study concludes that AI models could be successfully applied for the rapid estimation of soil trace metals and related decision-making.

Suggested Citation

  • Bassam Tawabini & Mohamed A. Yassin & Mohammed Benaafi & John Adedapo Adetoro & Abdulaziz Al-Shaibani & S. I. Abba, 2022. "Spatiotemporal Variability Assessment of Trace Metals Based on Subsurface Water Quality Impact Integrated with Artificial Intelligence-Based Modeling," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2192-:d:749648
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/4/2192/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/4/2192/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Quoc Bao Pham & S. I. Abba & Abdullahi Garba Usman & Nguyen Thi Thuy Linh & Vivek Gupta & Anurag Malik & Romulus Costache & Ngoc Duong Vo & Doan Quang Tri, 2019. "Potential of Hybrid Data-Intelligence Algorithms for Multi-Station Modelling of Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5067-5087, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manish Kumar & Anuradha Kumari & Daniel Prakash Kushwaha & Pravendra Kumar & Anurag Malik & Rawshan Ali & Alban Kuriqi, 2020. "Estimation of Daily Stage–Discharge Relationship by Using Data-Driven Techniques of a Perennial River, India," Sustainability, MDPI, vol. 12(19), pages 1-21, September.
    2. Maryam Rahimzad & Alireza Moghaddam Nia & Hosam Zolfonoon & Jaber Soltani & Ali Danandeh Mehr & Hyun-Han Kwon, 2021. "Performance Comparison of an LSTM-based Deep Learning Model versus Conventional Machine Learning Algorithms for Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4167-4187, September.
    3. Jamshid Piri & Mohammad Abdolahipour & Behrooz Keshtegar, 2023. "Advanced Machine Learning Model for Prediction of Drought Indices using Hybrid SVR-RSM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 683-712, January.
    4. Karbasi, Masoud & Jamei, Mehdi & Malik, Anurag & Kisi, Ozgur & Yaseen, Zaher Mundher, 2023. "Multi-steps drought forecasting in arid and humid climate environments: Development of integrative machine learning model," Agricultural Water Management, Elsevier, vol. 281(C).
    5. Tao, Hai & Alawi, Omer A. & Kamar, Haslinda Mohamed & Nafea, Ahmed Adil & AL-Ani, Mohammed M. & Abba, Sani I. & Salami, Babatunde Abiodun & Oudah, Atheer Y. & Mohammed, Mustafa K.A., 2024. "Development of integrative data intelligence models for thermo-economic performances prediction of hybrid organic rankine plants," Energy, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2192-:d:749648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.