IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i11d10.1007_s11269-019-02333-5.html
   My bibliography  Save this article

Modular Wavelet–Extreme Learning Machine: a New Approach for Forecasting Daily Rainfall

Author

Listed:
  • Aman Mohammad Kalteh

    (University of Guilan)

Abstract

A rainfall forecasting method based on coupling wavelet analysis and a novel artificial neural network technique called extreme learning machine (ELM) is proposed. In this way, the unique characteristics of each technique are combined to capture different patterns in the data. At first, wavelet analysis is used to decompose rainfall time series into wavelet coefficients, and then the wavelet coefficients are used as inputs into the ELM model to forecast rainfall. The accuracy of the model is further improved using a modular learning approach. In the modular learning, an innovative approach to determine the optimum number of clusters entitled threshold cluster number is introduced. The relative performances of the proposed models are compared with the single ELM model for three cases consisting of one daily rainfall series from Iran (Kharjeguil station), one daily rainfall series from India (Ajmer station) and one daily rainfall series from the United States (Barton Pond station). The correlation coefficient (r), root mean square errors (RMSE) and Nash–Sutcliffe efficiency coefficient (NS) statistics are used as the comparing criteria. The comparison results indicate that the proposed modular wavelet–ELM method could significantly increase the forecast accuracy and perform much better than both the wavelet–ELM and single ELM. Moreover, three case study results indicate the importance of determining the optimum number of clusters based on the new concept of threshold cluster number in order to achieve optimum forecast results.

Suggested Citation

  • Aman Mohammad Kalteh, 2019. "Modular Wavelet–Extreme Learning Machine: a New Approach for Forecasting Daily Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3831-3849, September.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:11:d:10.1007_s11269-019-02333-5
    DOI: 10.1007/s11269-019-02333-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02333-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02333-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Venkata Ramana & B. Krishna & S. Kumar & N. Pandey, 2013. "Monthly Rainfall Prediction Using Wavelet Neural Network Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3697-3711, August.
    2. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quoc Bao Pham & S. I. Abba & Abdullahi Garba Usman & Nguyen Thi Thuy Linh & Vivek Gupta & Anurag Malik & Romulus Costache & Ngoc Duong Vo & Doan Quang Tri, 2019. "Potential of Hybrid Data-Intelligence Algorithms for Multi-Station Modelling of Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5067-5087, December.
    2. R. Sarma & S. K. Singh, 2022. "A Comparative Study of Data-driven Models for Groundwater Level Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2741-2756, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Shenify & Amir Danesh & Milan Gocić & Ros Taher & Ainuddin Abdul Wahab & Abdullah Gani & Shahaboddin Shamshirband & Dalibor Petković, 2016. "Precipitation Estimation Using Support Vector Machine with Discrete Wavelet Transform," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 641-652, January.
    2. Pilar Lopez-Llompart & G. Mathias Kondolf, 2016. "Encroachments in floodways of the Mississippi River and Tributaries Project," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 513-542, March.
    3. Michelle Sheran Sylvester, 2007. "The Career and Family Choices of Women: A Dynamic Analysis of Labor Force Participation, Schooling, Marriage and Fertility Decisions," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 10(3), pages 367-399, July.
    4. DAVID M. BLAU & WILBERT van der KLAAUW, 2013. "What Determines Family Structure?," Economic Inquiry, Western Economic Association International, vol. 51(1), pages 579-604, January.
    5. Afanasyev, Dmitriy O. & Fedorova, Elena A. & Popov, Viktor U., 2015. "Fine structure of the price–demand relationship in the electricity market: Multi-scale correlation analysis," Energy Economics, Elsevier, vol. 51(C), pages 215-226.
    6. Peter Viggo Jakobsen, 2009. "Small States, Big Influence: The Overlooked Nordic Influence on the Civilian ESDP," Journal of Common Market Studies, Wiley Blackwell, vol. 47(1), pages 81-102, January.
    7. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
    8. Jan Babecký & Fabrizio Coricelli & Roman Horváth, 2009. "Assessing Inflation Persistence: Micro Evidence on an Inflation Targeting Economy," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 59(2), pages 102-127, June.
    9. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    10. Lloyd, S. P., 2017. "Unconventional Monetary Policy and the Interest Rate Channel: Signalling and Portfolio Rebalancing," Cambridge Working Papers in Economics 1735, Faculty of Economics, University of Cambridge.
    11. Ichiro Fukunaga, 2007. "Imperfect Common Knowledge, Staggered Price Setting, and the Effects of Monetary Policy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1711-1739, October.
    12. Albertazzi, Ugo & Gambacorta, Leonardo, 2009. "Bank profitability and the business cycle," Journal of Financial Stability, Elsevier, vol. 5(4), pages 393-409, December.
    13. Beck, Thorsten & Demirgüç-Kunt, Asli & Merrouche, Ouarda, 2013. "Islamic vs. conventional banking: Business model, efficiency and stability," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 433-447.
    14. Jinho Bae & Chang-Jin Kim & Dong Kim, 2012. "The evolution of the monetary policy regimes in the U.S," Empirical Economics, Springer, vol. 43(2), pages 617-649, October.
    15. McMahon, Rob, 2020. "Co-developing digital inclusion policy and programming with indigenous partners: Interventions from Canada," Internet Policy Review: Journal on Internet Regulation, Alexander von Humboldt Institute for Internet and Society (HIIG), Berlin, vol. 9(2), pages 1-26.
    16. George W. Evans & Seppo Honkapohja, 2009. "Robust Learning Stability with Operational Monetary Policy Rules," Central Banking, Analysis, and Economic Policies Book Series, in: Klaus Schmidt-Hebbel & Carl E. Walsh & Norman Loayza (Series Editor) & Klaus Schmidt-Hebbel (Series (ed.),Monetary Policy under Uncertainty and Learning, edition 1, volume 13, chapter 5, pages 145-170, Central Bank of Chile.
    17. Lehtonen, Heikki & Kujala, Sanna, 2007. "Climate change impacts on crop risks and agricultural production in Finland," 101st Seminar, July 5-6, 2007, Berlin Germany 9259, European Association of Agricultural Economists.
    18. Michael Pomerleano, 2011. "Developing Regional Financial Markets – the Case of East Asia," Chapters, in: Ulrich Volz (ed.), Regional Integration, Economic Development and Global Governance, chapter 9, Edward Elgar Publishing.
    19. Gary Charness & Francesco Feri & Miguel A. Meléndez-Jiménez & Matthias Sutter, 2023. "An Experimental Study on the Effects of Communication, Credibility, and Clustering in Network Games," The Review of Economics and Statistics, MIT Press, vol. 105(6), pages 1530-1543, November.
    20. Kitsul, Yuriy & Wright, Jonathan H., 2013. "The economics of options-implied inflation probability density functions," Journal of Financial Economics, Elsevier, vol. 110(3), pages 696-711.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:11:d:10.1007_s11269-019-02333-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.