IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i3d10.1007_s11269-017-1842-z.html
   My bibliography  Save this article

Impact of Normalization and Input on ARMAX-ANN Model Performance in Suspended Sediment Load Prediction

Author

Listed:
  • Hamid Moeeni

    (Razi University)

  • Hossein Bonakdari

    (Razi University)

Abstract

The suspended sediment load in rivers is an important parameter in watershed planning and management. Since daily suspended sediment time series contain linear and nonlinear components, existing prediction models are associated with limitations. Therefore, this study introduces a new hybrid model comprising two commonly used stochastic and nonlinear models. The sediment load is first modeled by an autoregressive-moving average with exogenous terms (ARMAX) model. Subsequently, the ARMAX residuals are modeled with an artificial neural network (ANN). For this purpose, discharge (Q) and sediment (S) are considered as model input parameters. Three modeling scenarios are defined to investigate the impact of data normalization on the hybrid model. The exponential and Box-Cox transformation methods are combined into a new data normalization method called mixed transformation. The performance of these methods is then compared. In addition, the impact of the type and number of input combinations on ARMAX-ANN model accuracy is evaluated. To this end, 12 input combinations and 1331 ARMAX and ANN models are verified. The ARMAX model inputs include S, Q and the white noise disturbance term (e), while the ANN model inputs include the ARMAX model results and residuals. Moreover, the hybrid model’s accuracy is compared with the ARMAX and ANN models.

Suggested Citation

  • Hamid Moeeni & Hossein Bonakdari, 2018. "Impact of Normalization and Input on ARMAX-ANN Model Performance in Suspended Sediment Load Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 845-863, February.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:3:d:10.1007_s11269-017-1842-z
    DOI: 10.1007/s11269-017-1842-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1842-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1842-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Hui & Tian, Hong-qi & Li, Yan-fei, 2012. "Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction," Applied Energy, Elsevier, vol. 98(C), pages 415-424.
    2. M. Mustafa & R. Rezaur & S. Saiedi & M. Isa, 2012. "River Suspended Sediment Prediction Using Various Multilayer Perceptron Neural Network Training Algorithms—A Case Study in Malaysia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1879-1897, May.
    3. Hamid Moeeni & Hossein Bonakdari & Isa Ebtehaj, 2017. "Integrated SARIMA with Neuro-Fuzzy Systems and Neural Networks for Monthly Inflow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2141-2156, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed Achite & Saeed Samadianfard & Nehal Elshaboury & Milad Sharafi, 2023. "Modeling and optimization of coagulant dosage in water treatment plants using hybridized random forest model with genetic algorithm optimization," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11189-11207, October.
    2. Bibhuti Bhusan Sahoo & Sovan Sankalp & Ozgur Kisi, 2023. "A Novel Smoothing-Based Deep Learning Time-Series Approach for Daily Suspended Sediment Load Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4271-4292, September.
    3. Elham Ghanbari-Adivi & Mohammad Ehteram & Alireza Farrokhi & Zohreh Sheikh Khozani, 2022. "Combining Radial Basis Function Neural Network Models and Inclusive Multiple Models for Predicting Suspended Sediment Loads," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4313-4342, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jianzhou & Xiong, Shenghua, 2014. "A hybrid forecasting model based on outlier detection and fuzzy time series – A case study on Hainan wind farm of China," Energy, Elsevier, vol. 76(C), pages 526-541.
    2. Dongxiao Niu & Yi Liang & Wei-Chiang Hong, 2017. "Wind Speed Forecasting Based on EMD and GRNN Optimized by FOA," Energies, MDPI, vol. 10(12), pages 1-18, December.
    3. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    4. Zhao, Jing & Guo, Zhen-Hai & Su, Zhong-Yue & Zhao, Zhi-Yuan & Xiao, Xia & Liu, Feng, 2016. "An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed," Applied Energy, Elsevier, vol. 162(C), pages 808-826.
    5. Koo, Junmo & Han, Gwon Deok & Choi, Hyung Jong & Shim, Joon Hyung, 2015. "Wind-speed prediction and analysis based on geological and distance variables using an artificial neural network: A case study in South Korea," Energy, Elsevier, vol. 93(P2), pages 1296-1302.
    6. Liu, Hui & Tian, Hong-qi & Pan, Di-fu & Li, Yan-fei, 2013. "Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks," Applied Energy, Elsevier, vol. 107(C), pages 191-208.
    7. Manisha Sawant & Rupali Patil & Tanmay Shikhare & Shreyas Nagle & Sakshi Chavan & Shivang Negi & Neeraj Dhanraj Bokde, 2022. "A Selective Review on Recent Advancements in Long, Short and Ultra-Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(21), pages 1-24, October.
    8. Rana Muhammad Adnan & Kulwinder Singh Parmar & Salim Heddam & Shamsuddin Shahid & Ozgur Kisi, 2021. "Suspended Sediment Modeling Using a Heuristic Regression Method Hybridized with Kmeans Clustering," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    9. Hua Li & Zhen Wang & Binbin Shan & Lingling Li, 2022. "Research on Multi-Step Prediction of Short-Term Wind Power Based on Combination Model and Error Correction," Energies, MDPI, vol. 15(22), pages 1-21, November.
    10. Wang, Jianzhou & An, Yining & Li, Zhiwu & Lu, Haiyan, 2022. "A novel combined forecasting model based on neural networks, deep learning approaches, and multi-objective optimization for short-term wind speed forecasting," Energy, Elsevier, vol. 251(C).
    11. Erasmo Cadenas & Wilfrido Rivera & Rafael Campos-Amezcua & Christopher Heard, 2016. "Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model," Energies, MDPI, vol. 9(2), pages 1-15, February.
    12. Chen, Xue-Jun & Zhao, Jing & Jia, Xiao-Zhong & Li, Zhong-Long, 2021. "Multi-step wind speed forecast based on sample clustering and an optimized hybrid system," Renewable Energy, Elsevier, vol. 165(P1), pages 595-611.
    13. Camelo, Henrique do Nascimento & Lucio, Paulo Sérgio & Leal Junior, João Bosco Verçosa & Carvalho, Paulo Cesar Marques de & Santos, Daniel von Glehn dos, 2018. "Innovative hybrid models for forecasting time series applied in wind generation based on the combination of time series models with artificial neural networks," Energy, Elsevier, vol. 151(C), pages 347-357.
    14. Wang, Jianzhou & Qin, Shanshan & Zhou, Qingping & Jiang, Haiyan, 2015. "Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China," Renewable Energy, Elsevier, vol. 76(C), pages 91-101.
    15. Sizhou Sun & Jingqi Fu & Ang Li, 2019. "A Compound Wind Power Forecasting Strategy Based on Clustering, Two-Stage Decomposition, Parameter Optimization, and Optimal Combination of Multiple Machine Learning Approaches," Energies, MDPI, vol. 12(18), pages 1-22, September.
    16. Hui Wang & Jingxuan Sun & Jianbo Sun & Jilong Wang, 2017. "Using Random Forests to Select Optimal Input Variables for Short-Term Wind Speed Forecasting Models," Energies, MDPI, vol. 10(10), pages 1-13, October.
    17. Ouyang, Tinghui & Kusiak, Andrew & He, Yusen, 2017. "Predictive model of yaw error in a wind turbine," Energy, Elsevier, vol. 123(C), pages 119-130.
    18. Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
    19. Sun, Mucun & Feng, Cong & Zhang, Jie, 2020. "Multi-distribution ensemble probabilistic wind power forecasting," Renewable Energy, Elsevier, vol. 148(C), pages 135-149.
    20. Akçay, Hüseyin & Filik, Tansu, 2017. "Short-term wind speed forecasting by spectral analysis from long-term observations with missing values," Applied Energy, Elsevier, vol. 191(C), pages 653-662.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:3:d:10.1007_s11269-017-1842-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.