IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i6d10.1007_s11269-018-1925-5.html
   My bibliography  Save this article

SWAT-Based Hydrological Modelling Using Model Selection Criteria

Author

Listed:
  • Bentolhoda Asl-Rousta

    (Amirkabir University of Technology (Tehran Polytechnic))

  • S. Jamshid Mousavi

    (Amirkabir University of Technology (Tehran Polytechnic))

  • Majid Ehtiat

    (Ardakan University)

  • Mehdi Ahmadi

    (Amirkabir University of Technology (Tehran Polytechnic))

Abstract

Calibration is an important step for the applicability of hydrological models as different parameter sets could produce similar results, calling for the use of appropriate performance criteria differentiating different parameter sets. This study focuses on the evaluation and comparison of SWAT-based hydrological modeling using both classical Nash Sutcliffe (NS) and the so called model selection criteria (MSC). Twelve SWAT models of the Sirwan River Basin in Iran are built based on different combinations of observed data, number of parameters and strategies used for calibration. The models are then evaluated against NS and eight MSC including AIC, AICc, AICu, CAIC, SIC, SICc, HIC and HICc, to rank the models and discriminate the most promising calibration setting from the aforementioned twelve candidate settings. Results show outperformance of MSC in terms of the robustness of the ranking outcomes both in calibration and validation phases as well as their discriminating power.

Suggested Citation

  • Bentolhoda Asl-Rousta & S. Jamshid Mousavi & Majid Ehtiat & Mehdi Ahmadi, 2018. "SWAT-Based Hydrological Modelling Using Model Selection Criteria," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(6), pages 2181-2197, April.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:6:d:10.1007_s11269-018-1925-5
    DOI: 10.1007/s11269-018-1925-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-1925-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-1925-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McQuarrie, Allan D., 1999. "A small-sample correction for the Schwarz SIC model selection criterion," Statistics & Probability Letters, Elsevier, vol. 44(1), pages 79-86, August.
    2. Bekele Debele & Raghavan Srinivasan & A. Gosain, 2010. "Comparison of Process-Based and Temperature-Index Snowmelt Modeling in SWAT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1065-1088, April.
    3. McQuarrie, Allan & Shumway, Robert & Tsai, Chih-Ling, 1997. "The model selection criterion AICu," Statistics & Probability Letters, Elsevier, vol. 34(3), pages 285-292, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Yan & Yanpeng Cai & Chunhui Li & Xuan Wang & Qiang Liu, 2019. "Hydrological Responses to Climate and Land Use Changes in a Watershed of the Loess Plateau, China," Sustainability, MDPI, vol. 11(5), pages 1-19, March.
    2. Naveed Ahmed & Genxu Wang & Martijn J. Booij & Sun Xiangyang & Fiaz Hussain & Ghulam Nabi, 2022. "Separation of the Impact of Landuse/Landcover Change and Climate Change on Runoff in the Upstream Area of the Yangtze River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 181-201, January.
    3. Zahra Emlaei & Sharareh Pourebrahim & Hamidreza Heidari & Khai Ern Lee, 2022. "The Impact of Climate Change as Well as Land-Use and Land-Cover Changes on Water Yield Services in Haraz Basin," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    4. Bentolhoda Asl-Rousta & S. Jamshid Mousavi, 2019. "A TOPSIS-Based Multicriteria Approach to the Calibration of a Basin-Scale SWAT Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 439-452, January.
    5. Alberto Martínez-Salvador & Carmelo Conesa-García, 2020. "Suitability of the SWAT Model for Simulating Water Discharge and Sediment Load in a Karst Watershed of the Semiarid Mediterranean Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 785-802, January.
    6. Alberto Martínez-Salvador & Agustín Millares & Joris P. C. Eekhout & Carmelo Conesa-García, 2021. "Assessment of Streamflow from EURO-CORDEX Regional Climate Simulations in Semi-Arid Catchments Using the SWAT Model," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    7. Junfang Liu & Baolin Xue & Yuhui Yan, 2020. "The Assessment of Climate Change and Land-Use Influences on the Runoff of a Typical Coastal Basin in Northern China," Sustainability, MDPI, vol. 12(23), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fábio Bayer & Francisco Cribari-Neto, 2015. "Bootstrap-based model selection criteria for beta regressions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 776-795, December.
    2. Carlos A. Medel, 2015. "Probabilidad Clásica de Sobreajuste con Criterios de Información: Estimaciones con Series Macroeconómicas Chilenas," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 30(1), pages 57-72, Abril.
    3. Sýdýka Baþçý & Asad Zaman & Arzdar Kiracý, 2010. "Variance Estimates and Model Selection," International Econometric Review (IER), Econometric Research Association, vol. 2(2), pages 57-72, September.
    4. Fernández, D. & Arnold, R. & Pledger, S., 2016. "Mixture-based clustering for the ordered stereotype model," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 46-75.
    5. Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini & Simona Minotti, 2015. "Erratum to: The Generalized Linear Mixed Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 327-355, July.
    6. Rinke Saskia & Sibbertsen Philipp, 2016. "Information criteria for nonlinear time series models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(3), pages 325-341, June.
    7. Peng Shi & Xinxin Ma & Yuanbing Hou & Qiongfang Li & Zhicai Zhang & Simin Qu & Chao Chen & Tao Cai & Xiuqin Fang, 2013. "Effects of Land-Use and Climate Change on Hydrological Processes in the Upstream of Huai River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1263-1278, March.
    8. Qichang Xie & Yingkun Yan & Xu Wang, 2023. "Assessing the role of foreign direct investment in environmental sustainability: a spatial semiparametric panel approach," Economic Change and Restructuring, Springer, vol. 56(2), pages 1263-1295, April.
    9. Eleni Matechou & Ivy Liu & Daniel Fernández & Miguel Farias & Bergljot Gjelsvik, 2016. "Biclustering Models for Two-Mode Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 611-624, September.
    10. Junyu Qi & Sheng Li & Qiang Li & Zisheng Xing & Charles P.-A. Bourque & Fan-Rui Meng, 2016. "Assessing an Enhanced Version of SWAT on Water Quantity and Quality Simulation in Regions with Seasonal Snow Cover," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5021-5037, November.
    11. Alessio Anzuini & Luca Rossi, 2022. "Unconventional monetary policies and expectations on economic variables," Empirical Economics, Springer, vol. 63(6), pages 3027-3043, December.
    12. Deepak Srivastava & Amit Kumar & Akshaya Verma & Siddharth Swaroop, 2014. "Analysis of Climate and Melt-runoff in Dunagiri Glacier of Garhwal Himalaya (India)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3035-3055, August.
    13. Rinke, Saskia, 2016. "The Influence of Additive Outliers on the Performance of Information Criteria to Detect Nonlinearity," Hannover Economic Papers (HEP) dp-575, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    14. Jennifer L. Castle & Xiaochuan Qin & W. Robert Reed, 2013. "Using Model Selection Algorithms To Obtain Reliable Coefficient Estimates," Journal of Economic Surveys, Wiley Blackwell, vol. 27(2), pages 269-296, April.
    15. Yongchao Duan & Min Luo & Xiufeng Guo & Peng Cai & Fu Li, 2021. "Study on the Relationship between Snowmelt Runoff for Different Latitudes and Vegetation Growth Based on an Improved SWAT Model in Xinjiang, China," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    16. R. Scott Hacker & Abdulnasser Hatemi-J, 2021. "Model selection in time series analysis: using information criteria as an alternative to hypothesis testing," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 49(6), pages 1055-1075, September.
    17. Lee, Shyan-Yuan & Tsai, Chih-Ling, 1998. "Model selection for causal models: The global procedure with AICC and AICU," Global Finance Journal, Elsevier, vol. 9(2), pages 205-223.
    18. Ryan MacDonald & James Byrne & Sarah Boon & Stefan Kienzle, 2012. "Modelling the Potential Impacts of Climate Change on Snowpack in the North Saskatchewan River Watershed, Alberta," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3053-3076, September.
    19. Kazi Rahman & Chetan Maringanti & Martin Beniston & Florian Widmer & Karim Abbaspour & Anthony Lehmann, 2013. "Streamflow Modeling in a Highly Managed Mountainous Glacier Watershed Using SWAT: The Upper Rhone River Watershed Case in Switzerland," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 323-339, January.
    20. Galeano, Pedro, 2004. "Model selection criteria and quadratic discrimination in ARMA and SETAR time series models," DES - Working Papers. Statistics and Econometrics. WS ws041406, Universidad Carlos III de Madrid. Departamento de Estadística.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:6:d:10.1007_s11269-018-1925-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.