IDEAS home Printed from https://ideas.repec.org/a/erh/journl/v2y2010i2p57-72.html
   My bibliography  Save this article

Variance Estimates and Model Selection

Author

Listed:
  • Sýdýka Baþçý

    (SESRIC)

  • Asad Zaman

    (International Islamic University of Islamabad)

  • Arzdar Kiracý

    (Baþkent University)

Abstract

The large majority of the criteria for model selection are functions of the usual variance estimate for a regression model. The validity of the usual variance estimate depends on some assumptions, most critically the validity of the model being estimated. This is often violated in model selection contexts, where model search takes place over invalid models. A cross validated variance estimate is more robust to specification errors (see, for example, Efron, 1983). We consider the effects of replacing the usual variance estimate by a cross validated variance estimate, namely, the Prediction Sum of Squares (PRESS) in the functions of several model selection criteria. Such replacements improve the probability of finding the true model, at least in large samples.

Suggested Citation

  • Sýdýka Baþçý & Asad Zaman & Arzdar Kiracý, 2010. "Variance Estimates and Model Selection," International Econometric Review (IER), Econometric Research Association, vol. 2(2), pages 57-72, September.
  • Handle: RePEc:erh:journl:v:2:y:2010:i:2:p:57-72
    as

    Download full text from publisher

    File URL: http://www.era.org.tr/makaleler/27040054.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Helmut Lütkepohl, 1985. "Comparison Of Criteria For Estimating The Order Of A Vector Autoregressive Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 6(1), pages 35-52, January.
    2. Geweke, John & Meese, Richard, 1981. "Estimating regression models of finite but unknown order," Journal of Econometrics, Elsevier, vol. 16(1), pages 162-162, May.
    3. Diebold, Francis X., 1989. "Forecast combination and encompassing: Reconciling two divergent literatures," International Journal of Forecasting, Elsevier, vol. 5(4), pages 589-592.
    4. Zaman, A., 1984. "Avoiding model selection by the use of shrinkage techniques," Journal of Econometrics, Elsevier, vol. 25(1-2), pages 73-85.
    5. Magee, Lonnie & Veall, Michael R, 1991. "Selecting Regressors for Prediction Using PRESS and White t Statistics," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(1), pages 91-96, January.
    6. McQuarrie, Allan & Shumway, Robert & Tsai, Chih-Ling, 1997. "The model selection criterion AICu," Statistics & Probability Letters, Elsevier, vol. 34(3), pages 285-292, June.
    7. Amemiya, Takeshi, 1980. "Selection of Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 21(2), pages 331-354, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Houcine Senoussi, 2021. "Inflation and Inflation Uncertainty in Growth Model of Barro: An Application of Random Forest Method," International Econometric Review (IER), Econometric Research Association, vol. 13(1), pages 4-23, March.
    2. Ozer Ozdemir & Memmedaga Memmedli & Akhlitdin Nizamitdinov, 2013. "ANN Models and Bayesian Spline Models for Analysis of Exchange Rates and Gold Price," International Econometric Review (IER), Econometric Research Association, vol. 5(2), pages 53-69, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Medel, 2012. "¿Akaike o Schwarz? ¿Cuál elegir para Predecir el PIB Chileno?," Working Papers Central Bank of Chile 658, Central Bank of Chile.
    2. Daniel Fernández, 2011. "Suficiencia del capital y previsiones de la banca uruguaya por su exposición al sector industrial," Monetaria, CEMLA, vol. 0(4), pages 517-589, octubre-d.
    3. Javier Pereda, 2011. "Estimación de la tasa natural de interés para Perú: un enfoque financiero," Monetaria, CEMLA, vol. 0(4), pages 429-459, octubre-d.
    4. Larry W. Taylor, 2009. "Penalized‐R2 Criteria For Model Selection," Manchester School, University of Manchester, vol. 77(6), pages 699-717, December.
    5. Kamas, Linda, 1995. "Monetary policy and inflation under the crawling peg: Some evidence from VARs for Colombia," Journal of Development Economics, Elsevier, vol. 46(1), pages 145-161, February.
    6. Galbraith, John W. & Zinde-Walsh, Victoria, 2004. "Évaluation de critères d’information pour les modèles de séries chronologiques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 80(2), pages 207-227, Juin-Sept.
    7. Tamara Burdisso & Eduardo Ariel Corso, 2011. "Incertidumbre y dolarización de cartera: el caso argentino en el último medio siglo," Monetaria, CEMLA, vol. 0(4), pages 461-515, octubre-d.
    8. Kim, Jae-Young, 2012. "Model selection in the presence of nonstationarity," Journal of Econometrics, Elsevier, vol. 169(2), pages 247-257.
    9. Carlos A. Medel Vera, 2011. "¿Akaike o Schwarz? ¿Cuál utilizar para predecir el PIB chileno?," Monetaria, CEMLA, vol. 0(4), pages 591-615, octubre-d.
    10. Carlos A. Medel & Sergio C. Salgado, 2013. "Does the Bic Estimate and Forecast Better than the Aic?," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 28(1), pages 47-64, April.
    11. K.R. Sawyer, 1982. "Parsimony in Model Selection," Economics Discussion / Working Papers 82-10, The University of Western Australia, Department of Economics.
    12. Baci, Sidika & Zaman, Asad, 1998. "Effects of skewness and kurtosis on model selection criteria," Economics Letters, Elsevier, vol. 59(1), pages 17-22, April.
    13. Athanasopoulos, George & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor & Vahid, Farshid, 2011. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," Journal of Econometrics, Elsevier, vol. 164(1), pages 116-129, September.
    14. Carlos Medel, 2017. "Forecasting Chilean inflation with the hybrid new keynesian Phillips curve: globalisation, combination, and accuracy," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 20(3), pages 004-050, December.
    15. Adrian Bruhin & Ernst Fehr & Daniel Schunk, 2019. "The many Faces of Human Sociality: Uncovering the Distribution and Stability of Social Preferences," Journal of the European Economic Association, European Economic Association, vol. 17(4), pages 1025-1069.
    16. David Genesove & Christopher Mayer, 2001. "Loss Aversion and Seller Behavior: Evidence from the Housing Market," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(4), pages 1233-1260.
    17. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    18. Trancoso, Tiago, 2014. "Emerging markets in the global economic network: Real(ly) decoupling?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 499-510.
    19. Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01317974, HAL.
    20. Dierk HERZER & Felicitas NOWAK‐LEHMANN D. & Boriss SILIVERSTOVS, 2006. "Export‐Led Growth In Chile: Assessing The Role Of Export Composition In Productivity Growth," The Developing Economies, Institute of Developing Economies, vol. 44(3), pages 306-328, September.

    More about this item

    Keywords

    Autoregressive Process; Lag Order Determination; Model Selection Criteria; Cross Validation;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:erh:journl:v:2:y:2010:i:2:p:57-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: M. F. Cosar (email available below). General contact details of provider: https://edirc.repec.org/data/eratrea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.