IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v32y2015i1p85-113.html
   My bibliography  Save this article

The Generalized Linear Mixed Cluster-Weighted Model

Author

Listed:
  • Salvatore Ingrassia
  • Antonio Punzo
  • Giorgio Vittadini
  • Simona Minotti

Abstract

Cluster-weighted models (CWMs) are a flexible family of mixture models for fitting the joint distribution of a random vector composed of a response variable and a set of covariates. CWMs act as a convex combination of the products of the marginal distribution of the covariates and the conditional distribution of the response given the covariates. In this paper, we introduce a broad family of CWMs in which the component conditional distributions are assumed to belong to the exponential family and the covariates are allowed to be of mixed-type. Under the assumption of Gaussian covariates, sufficient conditions for model identifiability are provided. Moreover, maximum likelihood parameter estimates are derived using the EM algorithm. Parameter recovery, classification assessment, and performance of some information criteria are investigated through a broad simulation design. An application to real data is finally presented, with the proposed model outperforming other well-established mixture-based approaches. Copyright Classification Society of North America 2015

Suggested Citation

  • Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini & Simona Minotti, 2015. "The Generalized Linear Mixed Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 32(1), pages 85-113, April.
  • Handle: RePEc:spr:jclass:v:32:y:2015:i:1:p:85-113
    DOI: 10.1007/s00357-015-9175-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00357-015-9175-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00357-015-9175-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanjeena Subedi & Antonio Punzo & Salvatore Ingrassia & Paul McNicholas, 2013. "Clustering and classification via cluster-weighted factor analyzers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(1), pages 5-40, March.
    2. Ingrassia, Salvatore & Minotti, Simona C. & Punzo, Antonio, 2014. "Model-based clustering via linear cluster-weighted models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 159-182.
    3. Michel Wedel, 2002. "Concomitant variables in finite mixture models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 56(3), pages 362-375, August.
    4. Christian Hennig & Tim F. Liao, 2013. "How to find an appropriate clustering for mixed-type variables with application to socio-economic stratification," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(3), pages 309-369, May.
    5. Salvatore Ingrassia & Simona Minotti & Giorgio Vittadini, 2012. "Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical Distributions," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 363-401, October.
    6. Salvatore Ingrassia & Simona Minotti & Giorgio Vittadini, 2012. "Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical Distributions," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 363-401, October.
    7. McNicholas, P.D. & Murphy, T.B. & McDaid, A.F. & Frost, D., 2010. "Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 711-723, March.
    8. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    9. Grün, Bettina & Leisch, Friedrich, 2008. "FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i04).
    10. Luca Bagnato & Antonio Punzo, 2013. "Finite mixtures of unimodal beta and gamma densities and the $$k$$ -bumps algorithm," Computational Statistics, Springer, vol. 28(4), pages 1571-1597, August.
    11. Francesca Greselin & Antonio Punzo, 2013. "Closed Likelihood Ratio Testing Procedures to Assess Similarity of Covariance Matrices," The American Statistician, Taylor & Francis Journals, vol. 67(3), pages 117-128, August.
    12. Michel Wedel & Wayne DeSarbo, 1995. "A mixture likelihood approach for generalized linear models," Journal of Classification, Springer;The Classification Society, vol. 12(1), pages 21-55, March.
    13. McQuarrie, Allan & Shumway, Robert & Tsai, Chih-Ling, 1997. "The model selection criterion AICu," Statistics & Probability Letters, Elsevier, vol. 34(3), pages 285-292, June.
    14. Biernacki, Christophe & Celeux, Gilles & Govaert, Gerard, 2003. "Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 561-575, January.
    15. Karlis, Dimitris & Xekalaki, Evdokia, 2003. "Choosing initial values for the EM algorithm for finite mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 577-590, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini & Simona Minotti, 2015. "Erratum to: The Generalized Linear Mixed Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 327-355, July.
    2. Salvatore Ingrassia & Antonio Punzo, 2020. "Cluster Validation for Mixtures of Regressions via the Total Sum of Squares Decomposition," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 526-547, July.
    3. Antonio Punzo & Paul. D. McNicholas, 2017. "Robust Clustering in Regression Analysis via the Contaminated Gaussian Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 249-293, July.
    4. Angelo Mazza & Antonio Punzo, 2020. "Mixtures of multivariate contaminated normal regression models," Statistical Papers, Springer, vol. 61(2), pages 787-822, April.
    5. Paolo Berta & Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini, 2016. "Multilevel cluster-weighted models for the evaluation of hospitals," METRON, Springer;Sapienza Università di Roma, vol. 74(3), pages 275-292, December.
    6. Utkarsh J. Dang & Antonio Punzo & Paul D. McNicholas & Salvatore Ingrassia & Ryan P. Browne, 2017. "Multivariate Response and Parsimony for Gaussian Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 34(1), pages 4-34, April.
    7. Morris, Katherine & Punzo, Antonio & McNicholas, Paul D. & Browne, Ryan P., 2019. "Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 145-166.
    8. Maruotti, Antonello & Punzo, Antonio, 2017. "Model-based time-varying clustering of multivariate longitudinal data with covariates and outliers," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 475-496.
    9. Diani, Cecilia & Galimberti, Giuliano & Soffritti, Gabriele, 2022. "Multivariate cluster-weighted models based on seemingly unrelated linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    10. Paul D. McNicholas, 2016. "Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 331-373, October.
    11. Nguyen, Hien D. & McLachlan, Geoffrey J., 2016. "Laplace mixture of linear experts," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 177-191.
    12. Počuča, Nikola & Jevtić, Petar & McNicholas, Paul D. & Miljkovic, Tatjana, 2020. "Modeling frequency and severity of claims with the zero-inflated generalized cluster-weighted models," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 79-93.
    13. Xiaoqiong Fang & Andy W. Chen & Derek S. Young, 2023. "Predictors with measurement error in mixtures of polynomial regressions," Computational Statistics, Springer, vol. 38(1), pages 373-401, March.
    14. Sanjeena Subedi & Antonio Punzo & Salvatore Ingrassia & Paul McNicholas, 2015. "Cluster-weighted $$t$$ t -factor analyzers for robust model-based clustering and dimension reduction," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(4), pages 623-649, November.
    15. Hung Tong & Cristina Tortora, 2022. "Model-based clustering and outlier detection with missing data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 5-30, March.
    16. repec:jss:jstsof:28:i04 is not listed on IDEAS
    17. Derek S. Young & Xi Chen & Dilrukshi C. Hewage & Ricardo Nilo-Poyanco, 2019. "Finite mixture-of-gamma distributions: estimation, inference, and model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1053-1082, December.
    18. Galimberti, Giuliano & Soffritti, Gabriele, 2014. "A multivariate linear regression analysis using finite mixtures of t distributions," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 138-150.
    19. Salvatore D. Tomarchio & Paul D. McNicholas & Antonio Punzo, 2021. "Matrix Normal Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 556-575, October.
    20. Gabriele Perrone & Gabriele Soffritti, 2023. "Seemingly unrelated clusterwise linear regression for contaminated data," Statistical Papers, Springer, vol. 64(3), pages 883-921, June.
    21. Michael P. B. Gallaugher & Salvatore D. Tomarchio & Paul D. McNicholas & Antonio Punzo, 2022. "Multivariate cluster weighted models using skewed distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 93-124, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:32:y:2015:i:1:p:85-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.