IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i15d10.1007_s11269-018-2060-z.html
   My bibliography  Save this article

A Framework for Dry Period Low Flow Forecasting in Mediterranean Streams

Author

Listed:
  • Konstantina Risva

    (National Technical University of Athens)

  • Dionysios Nikolopoulos

    (National Technical University of Athens)

  • Andreas Efstratiadis

    (National Technical University of Athens)

  • Ioannis Nalbantis

    (National Technical University of Athens)

Abstract

The objective of this article is to provide a simple and effective tool for low flow forecasting up to six months ahead, with minimal data requirements, i.e. flow observations retrieved at the end of wet period (first half of April, for the Mediterranean region). The core of the methodological framework is the exponential decay function, while the typical split-sample approach for model calibration, which is known to suffer from the dependence on the selection of the calibration data set, is enhanced by introducing the so-called Randomly Selected Multiple Subsets (RSMS) calibration procedure. Moreover, we introduce and employ a modified efficiency metric, since in this modelling context the classical Nash-Sutcliffe efficiency yields unrealistically high performance. The proposed framework is evaluated at 25 Mediterranean rivers of different scales and flow dynamics, including streams with intermittent regime. Initially, signal processing and data smoothing techniques are applied to the raw hydrograph, in order to cut-off high flows that are due to flood events occurring in dry periods, and allow for keeping the decaying form of the baseflow component. We then employ the linear reservoir model to extract the annually varying recession coefficient, and, then, attempt to explain its median value (over a number of years) on the basis of typical hydrological indices and the catchment area. Next, we run the model in forecasting mode, by considering that the recession coefficient of each dry period ahead is a linear function of the observed flow at the end of the wet period. In most of the examined catchments, the model exhibits very satisfactory predictive capacity and is also robust, as indicated by the limited variability of the optimized model parameters across randomly selected calibration sets.

Suggested Citation

  • Konstantina Risva & Dionysios Nikolopoulos & Andreas Efstratiadis & Ioannis Nalbantis, 2018. "A Framework for Dry Period Low Flow Forecasting in Mediterranean Streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4911-4932, December.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:15:d:10.1007_s11269-018-2060-z
    DOI: 10.1007/s11269-018-2060-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-2060-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-2060-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saeid Eslamian & Mehdi Ghasemizadeh & Monireh Biabanaki & Mansoor Talebizadeh, 2010. "A Principal Component Regression Method for Estimating Low Flow Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2553-2566, September.
    2. Ali Assani & Alain Chalifour & Guillaume Légaré & Caza-Szoka Manouane & Denis Leroux, 2011. "Temporal Regionalization of 7-Day Low Flows in the St. Lawrence Watershed in Quebec (Canada)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3559-3574, November.
    3. Maryam Azizabadi Farahani & Davar Khalili, 2013. "Seasonality Characteristics and Spatio-temporal Trends of 7-day Low Flows in a Large, Semi-arid Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4897-4911, November.
    4. Paolo Vezza & Claudio Comoglio & Maurizio Rosso & Alberto Viglione, 2010. "Low Flows Regionalization in North-Western Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 4049-4074, November.
    5. K. Engeland & H. Hisdal, 2009. "A Comparison of Low Flow Estimates in Ungauged Catchments Using Regional Regression and the HBV-Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(12), pages 2567-2586, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vassilios A. Tsihrintzis & Harris Vangelis, 2018. "Water Resources and Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4813-4817, December.
    2. Akshay Kadu & Basudev Biswal, 2022. "A Model Combination Approach for Improving Streamflow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 5945-5959, December.
    3. Selen Orta & Hafzullah Aksoy, 2022. "Development of Low Flow Duration-Frequency Curves by Hybrid Frequency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1521-1534, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gokmen Tayfur & Vijay Singh, 2011. "Predicting Mean and Bankfull Discharge from Channel Cross-Sectional Area by Expert and Regression Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1253-1267, March.
    2. Selen Orta & Hafzullah Aksoy, 2022. "Development of Low Flow Duration-Frequency Curves by Hybrid Frequency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1521-1534, March.
    3. Arash Modaresi Rad & Davar Khalili & Ali Akbar Kamgar-Haghighi & Shahrokh Zand-Parsa & Seyed Adib Banimahd, 2016. "Assessment of seasonal characteristics of streamflow droughts under semiarid conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1541-1564, July.
    4. Ligia de Oliveira Serrano & Rayssa Balieiro Ribeiro & Alisson Carraro Borges & Fernando Falco Pruski, 2020. "Low-Flow Seasonality and Effects on Water Availability throughout the River Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1289-1304, March.
    5. Ali Assani & Raphaëlle Landry & Jonathan Daigle & Alain Chalifour, 2011. "Reservoirs Effects on the Interannual Variability of Winter and Spring Streamflow in the St-Maurice River Watershed (Quebec, Canada)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3661-3675, November.
    6. Samane Saadat & Davar Khalili & Ali Kamgar-Haghighi & Shahrokh Zand-Parsa, 2013. "Investigation of spatio-temporal patterns of seasonal streamflow droughts in a semi-arid region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1697-1720, December.
    7. Baifus Manke, Emanuele & Nörenberg, Bernardo Gomes & Faria, Lessandro Coll & Tarjuelo, José Maria & Colombo, Alberto & Chagas Neta, Maria Clotilde Carré & Parfitt, José Maria Barbat, 2019. "Wind drift and evaporation losses of a mechanical lateral-move irrigation system: Oscillating plate versus fixed spray plate sprinklers," Agricultural Water Management, Elsevier, vol. 225(C).
    8. Ye Tian & Yue-Ping Xu & Xu-Jie Zhang, 2013. "Assessment of Climate Change Impacts on River High Flows through Comparative Use of GR4J, HBV and Xinanjiang Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2871-2888, June.
    9. Jianzhu Li & Senming Tan & Zhaozhen Wei & Fulong Chen & Ping Feng, 2014. "A New Method of Change Point Detection Using Variable Fuzzy Sets Under Environmental Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5125-5138, November.
    10. Chang-Shian Chen & Frederick Chou & Boris Chen, 2010. "Spatial Information-Based Back-Propagation Neural Network Modeling for Outflow Estimation of Ungauged Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 4175-4197, November.
    11. Maryam Azizabadi Farahani & Davar Khalili, 2013. "Seasonality Characteristics and Spatio-temporal Trends of 7-day Low Flows in a Large, Semi-arid Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4897-4911, November.
    12. Dave Deckers & Martijn Booij & Tom Rientjes & Maarten Krol, 2010. "Catchment Variability and Parameter Estimation in Multi-Objective Regionalisation of a Rainfall–Runoff Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3961-3985, November.
    13. Saeid Eslamian & Mehdi Ghasemizadeh & Monireh Biabanaki & Mansoor Talebizadeh, 2010. "A Principal Component Regression Method for Estimating Low Flow Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2553-2566, September.
    14. Paolo Vezza & Claudio Comoglio & Maurizio Rosso & Alberto Viglione, 2010. "Low Flows Regionalization in North-Western Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 4049-4074, November.
    15. Marco Franchini & Ernesto Ventaglio & Alessandra Bonoli, 2011. "A Procedure for Evaluating the Compatibility of Surface Water Resources with Environmental and Human Requirements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3613-3634, November.
    16. Samuel Beskow & Lloyd Norton & Carlos Mello, 2013. "Hydrological Prediction in a Tropical Watershed Dominated by Oxisols Using a Distributed Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 341-363, January.
    17. Pao-Shan Yu & Tao-Chang Yang & Chen-Min Kuo & Yi-Tai Wang, 2014. "A Stochastic Approach for Seasonal Water-Shortage Probability Forecasting Based on Seasonal Weather Outlook," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3905-3920, September.
    18. Jordan Clayton & Jason Kean, 2010. "Establishing a Multi-scale Stream Gaging Network in the Whitewater River Basin, Kansas, USA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3641-3664, October.
    19. Ali Assani & Raphaëlle Landry & Ouassila Azouaoui & Philippe Massicotte & Denis Gratton, 2016. "Comparison of the Characteristics (Frequency and Timing) of Drought and Wetness Indices of Annual Mean Water Levels in the Five North American Great Lakes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 359-373, January.
    20. Xinjun Tu & Vijay Singh & Xiaohong Chen & Lu Chen & Qiang Zhang & Yong Zhao, 2015. "Intra-annual Distribution of Streamflow and Individual Impacts of Climate Change and Human Activities in the Dongijang River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2677-2695, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:15:d:10.1007_s11269-018-2060-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.