IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i2d10.1007_s11269-015-0994-y.html
   My bibliography  Save this article

Combined Assessment of Climate Change and Socio-Economic Development as Drivers of Freshwater Availability in the South of Portugal

Author

Listed:
  • Tibor Y. Stigter

    (Department of Water Science and Engineering)

  • Marta Varanda

    (Universidade de Lisboa)

  • Sofia Bento

    (Universidade de Lisboa)

  • João Pedro Nunes

    (Universidade de Aveiro)

  • Rui Hugman

    (Universidade do Algarve)

Abstract

A combined assessment of the potential impacts from climate change (CC) and socio-economic development (SED) on water resources is presented for the most important aquifer in the south of Portugal. The goal is to understand how CC and SED affect the currently large pressures from water consuming and contaminating activities, predominantly agriculture. Short-term (2020–2050) and long-term (2070–2100) CC scenarios were developed and used to build aquifer recharge and crop water demand scenarios, using different methods to account for uncertainty. SED scenarios were developed using bottom-up and top-down methods, and discussed at workshops with farmers and institutional stakeholders in the water sector. Groundwater use was quantified for each scenario. Together with the recharge scenarios, these were run through a calibrated groundwater flow model, to study their individual and joint impacts on groundwater levels and discharge rates into a coastal estuary. Recharge scenarios show clear negative long-term trends and short-term increase in temporal variability of recharge, though short-term model uncertainties are higher. SED scenario 1 (SED1), predicting intensification and decline of small farms, considered the most likely by all workshop participants, shows a large drop in agricultural area and water demand. SED2, a most desired scenario by farmers, foresees growth and modernization of agriculture, but proves unsustainable in combination with predicted CC without efficient adaptation measures. The results thus reveal that CC in the region will dynamically interact with economic factors, and going one step beyond, CC could be directly integrated as a constraint in the development of SED scenarios. Exercises involving the integration of CC and SED regionally based scenarios, constructed in both bottom-up and top- down fashion and discussed in participatory contexts are still rarely used for adaptation, and specifically adaptation of agriculture to water scarcity. The joint analysis of CC and SED revealed challenging, as it involved the use of different methods across the border between natural and social sciences. In our view this method contributes in an encouraging manner to a more holistic and transdisciplinary water management, by allowing a more plausible identification of what (and if) adaptation measures are needed.

Suggested Citation

  • Tibor Y. Stigter & Marta Varanda & Sofia Bento & João Pedro Nunes & Rui Hugman, 2017. "Combined Assessment of Climate Change and Socio-Economic Development as Drivers of Freshwater Availability in the South of Portugal," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(2), pages 609-628, January.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:2:d:10.1007_s11269-015-0994-y
    DOI: 10.1007/s11269-015-0994-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-015-0994-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-015-0994-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hallie Eakin & Victor Magaña & Joel Smith & José Moreno & José Martínez & Osvaldo Landavazo, 2007. "A stakeholder driven process to reduce vulnerability to climate change in Hermosillo, Sonora, Mexico," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(5), pages 935-955, June.
    2. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    3. P. Harrison & I. Holman & P. Berry, 2015. "Assessing cross-sectoral climate change impacts, vulnerability and adaptation: an introduction to the CLIMSAVE project," Climatic Change, Springer, vol. 128(3), pages 153-167, February.
    4. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    5. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    6. Philip Lowe & Jeremy Phillipson, 2009. "Barriers to Research Collaboration across Disciplines: Scientific Paradigms and Institutional Practices," Environment and Planning A, , vol. 41(5), pages 1171-1184, May.
    7. Jean-Daniel Rinaudo & Marielle Montginoul & Marta Varanda & Sofia Bento, 2012. "Envisioning innovative groundwater regulation policies through scenario workshops in France and Portugal," Post-Print hal-00658994, HAL.
    8. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amandine Valérie Pastor & Joao Pedro Nunes & Rossano Ciampalini & Haithem Bahri & Mohamed Annabi & Mohamed Chikhaoui & Armand Crabit & Stéphane Follain & Jan Jacob Keizer & Jérôme Latron & Feliciana L, 2022. "ScenaLand: a simple methodology for developing land use and management scenarios," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-29, December.
    2. Melissa Bedinger & Lindsay Beevers & Lila Collet & Annie Visser, 2019. "Are We Doing ‘Systems’ Research? An Assessment of Methods for Climate Change Adaptation to Hydrohazards in a Complex World," Sustainability, MDPI, vol. 11(4), pages 1-34, February.
    3. Miguel Rodrigues & Carla Antunes, 2021. "Best Management Practices for the Transition to a Water-Sensitive City in the South of Portugal," Sustainability, MDPI, vol. 13(5), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holman, I.P. & Brown, C & Janes, V & Sandars, D, 2017. "Can we be certain about future land use change in Europe? A multi-scenario, integrated-assessment analysis," Agricultural Systems, Elsevier, vol. 151(C), pages 126-135.
    2. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    3. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    4. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    5. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    6. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    7. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    8. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    9. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    10. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    11. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    12. Zheng, Zhoumin & Xu, Nuo & Khan, Mohsin & Pedersen, Michael & Abdalgader, Tarteel & Zhang, Lai, 2024. "Nonlinear impacts of climate change on dengue transmission in mainland China: Underlying mechanisms and future projection," Ecological Modelling, Elsevier, vol. 492(C).
    13. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.
    14. Francesco Lamperti & Valentina Bosetti & Andrea Roventini & Massimo Tavoni, 2019. "The public costs of climate-induced financial instability," Nature Climate Change, Nature, vol. 9(11), pages 829-833, November.
    15. Julien CALAS & Antoine GODIN & Julie MAURIN (AFD) & and Etienne ESPAGNE (World Bank), 2022. "Global biodiversity scenarios: what do they tell us for biodiversity-related socioeconomic impacts?," Working Paper 1a39419b-ef1d-4b82-a7be-d, Agence française de développement.
    16. Juliette N. Rooney-Varga & Florian Kapmeier & John D. Sterman & Andrew P. Jones & Michele Putko & Kenneth Rath, 2020. "The Climate Action Simulation," Simulation & Gaming, , vol. 51(2), pages 114-140, April.
    17. Moyer, Jonathan D. & Hedden, Steve, 2020. "Are we on the right path to achieve the sustainable development goals?," World Development, Elsevier, vol. 127(C).
    18. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.
    19. Ansari, Dawud & Holz, Franziska & Al-Kuhlani, Hashem, 2020. "Energy Outlooks Compared: Global and Regional Insights," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 9(1), pages 21-42.
    20. Kemp-Benedict, Eric & Carlsen, Henrik & Kartha, Sivan, 2019. "Large-scale scenarios as ‘boundary conditions’: A cross-impact balance simulated annealing (CIBSA) approach," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 55-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:2:d:10.1007_s11269-015-0994-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.