IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i6d10.1007_s11269-016-1264-3.html
   My bibliography  Save this article

Projecting River Basin Resilience in the Zambezi River Basin through Global Analyses and Basin Realities

Author

Listed:
  • Jacob D. Petersen-Perlman

    (Oregon State University)

Abstract

Projecting future hotspots of hydropolitical tension in international river basins may help countries in preventing hydropolitical conflict. The Zambezi River Basin has been identified as a basin at risk of future hydropolitical conflict. This paper analyzes the basin’s hydropolitical resilience using two approaches: i) a global analysis of factors that indicate change and institutional capacity, and ii) an in-depth examination of its hydropolitical history and present-day status using interviews with basin stakeholders, academics, NGOs, and policy makers. Results of the global analysis indicate that the Zambezi River Basin has comparatively higher institutional capacity, lower to medium rates of new dam development, lower human development and security values, lower water scarcity, yet higher projected water variability. Examining the basin’s hydropolitical history shows that these results are contextually dependent. This paper argues that while global hydropolitical resilience analyses are valid for indicating areas of possible tension over shared water resources, tracing basins’ hydropolitical history puts the global results into context that is crucial to identify specific aspects of the basin that may push the basin into conflict.

Suggested Citation

  • Jacob D. Petersen-Perlman, 2016. "Projecting River Basin Resilience in the Zambezi River Basin through Global Analyses and Basin Realities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 1987-2003, April.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:6:d:10.1007_s11269-016-1264-3
    DOI: 10.1007/s11269-016-1264-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1264-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1264-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lucia De Stefano & James Duncan & Shlomi Dinar & Kerstin Stahl & Kenneth M Strzepek & Aaron T Wolf, 2012. "Climate change and the institutional resilience of international river basins," Journal of Peace Research, Peace Research Institute Oslo, vol. 49(1), pages 193-209, January.
    2. World Bank, 2010. "The Zambezi River Basin : A Multi-Sector Investment Opportunities Analysis - Summary Report," World Bank Publications - Reports 2958, The World Bank Group.
    3. Unesco Unesco, 2015. "Water for a Sustainable World," Working Papers id:6657, eSocialSciences.
    4. World Bank, 2010. "The Zambezi River Basin : A Multi-Sector Investment Opportunities Analysis - Basin Development Scenarios," World Bank Publications - Reports 2959, The World Bank Group.
    5. Danuta Grosbois & Ryan Plummer, 2015. "Problematizing Water Vulnerability Indices at a Local Level: a Critical Review and Proposed Solution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5015-5035, November.
    6. T. Cohen Liechti & J. Matos & J.-L. Boillat & A. Schleiss, 2015. "Influence of Hydropower Development on Flow Regime in the Zambezi River Basin for Different Scenarios of Environmental Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 731-747, February.
    7. World Bank, 2010. "The Zambezi River Basin : A Multi-Sector Investment Opportunities Analysis - Modeling, Analysis, and Input Data," World Bank Publications - Reports 2960, The World Bank Group.
    8. Coleen Fox & Chris Sneddon, 2007. "Transboundary river basin agreements in the Mekong and Zambezi basins: Enhancing environmental security or securitizing the environment?," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 7(3), pages 237-261, September.
    9. World Bank, 2010. "The Zambezi River Basin : A Multi-Sector Investment Opportunities Analysis - State of the Basin," World Bank Publications - Reports 2961, The World Bank Group.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boehlert, Brent & Strzepek, Kenneth M. & Gebretsadik, Yohannes & Swanson, Richard & McCluskey, Alyssa & Neumann, James E. & McFarland, James & Martinich, Jeremy, 2016. "Climate change impacts and greenhouse gas mitigation effects on U.S. hydropower generation," Applied Energy, Elsevier, vol. 183(C), pages 1511-1519.
    2. Sylvester Mpandeli & Luxon Nhamo & Sithabile Hlahla & Dhesigen Naidoo & Stanley Liphadzi & Albert Thembinkosi Modi & Tafadzwanashe Mabhaudhi, 2020. "Migration under Climate Change in Southern Africa: A Nexus Planning Perspective," Sustainability, MDPI, vol. 12(11), pages 1-14, June.
    3. Nhamo, Luxon & Ndlela, B. & Nhemachena, Charles & Mabhaudhi, T. & Mpandeli, S. & Matchaya, Greenwell, 2018. "The water-energy-food nexus: climate risks and opportunities in southern Africa," Papers published in Journals (Open Access), International Water Management Institute, pages 10(5):1-18..
    4. Van Dijk, M. & You, L. & Havlik, P. & Palazzo, A. & Mosnier, A., 2018. "Generating high-resolution national crop distribution maps: Combining statistics, gridded data and surveys using an optimization approach," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 276038, International Association of Agricultural Economists.
    5. Mulenga Kalumba & Edwin Nyirenda & Imasiku Nyambe & Stefaan Dondeyne & Jos Van Orshoven, 2022. "Machine Learning Techniques for Estimating Hydraulic Properties of the Topsoil across the Zambezi River Basin," Land, MDPI, vol. 11(4), pages 1-22, April.
    6. Ishmael B. M. Kosamu & Wouter T. De Groot & Patrick S. Kambewa & Geert R. De Snoo, 2012. "Institutions and Ecosystem-Based Development Potentials of the Elephant Marsh, Malawi," Sustainability, MDPI, vol. 4(12), pages 1-20, December.
    7. T. Cohen Liechti & J. Matos & J.-L. Boillat & A. Schleiss, 2015. "Influence of Hydropower Development on Flow Regime in the Zambezi River Basin for Different Scenarios of Environmental Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 731-747, February.
    8. Charles Fant & Yohannes Gebretsadik & Alyssa McCluskey & Kenneth Strzepek, 2015. "An uncertainty approach to assessment of climate change impacts on the Zambezi River Basin," Climatic Change, Springer, vol. 130(1), pages 35-48, May.
    9. Roobavannan, M. & Kandasamy, J. & Pande, S. & Vigneswaran, S. & Sivapalan, M., 2020. "Sustainability of agricultural basin development under uncertain future climate and economic conditions: A socio-hydrological analysis," Ecological Economics, Elsevier, vol. 174(C).
    10. Joyeeta Gupta & Aarti Gupta & Courtney Vegelin, 2022. "Equity, justice and the SDGs: lessons learnt from two decades of INEA scholarship," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 22(2), pages 393-409, June.
    11. Daniele T. P. Souza & Eugenia A. Kuhn & Arjen E. J. Wals & Pedro R. Jacobi, 2020. "Learning in, with, and through the Territory: Territory-Based Learning as a Catalyst for Urban Sustainability," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    12. Simon Tilleard & James Ford, 2016. "Adaptation readiness and adaptive capacity of transboundary river basins," Climatic Change, Springer, vol. 137(3), pages 575-591, August.
    13. Caldera, Upeksha & Breyer, Christian, 2020. "Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems," Energy, Elsevier, vol. 200(C).
    14. F. Akinola & F. & M. & O. Lasisi & B & S. Awe, 2021. "Impacts Of Dumpsite On Soil And Groundwater Quality: A Case Study Of Erinfun Community, Ado Ekiti, Southwestern Nigeria," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 5(2), pages 112-116, August.
    15. Kun Cheng & Qiang Fu & Xi Chen & Tianxiao Li & Qiuxiang Jiang & Xiaosong Ma & Ke Zhao, 2015. "Adaptive Allocation Modeling for a Complex System of Regional Water and Land Resources Based on Information Entropy and its Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 4977-4993, November.
    16. Usman, Muhammad & Khalid, Khaizran & Mehdi, Muhammad Abuzar, 2021. "What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization," Renewable Energy, Elsevier, vol. 168(C), pages 1165-1176.
    17. Cavalcante, Ana Helena A. P., 2015. "Barriers and opportunities for climate adaptation: The water crisis in Greater São Paulo," The Constitutional Economics Network Working Papers 04-2015, University of Freiburg, Department of Economic Policy and Constitutional Economic Theory.
    18. P. van Rensburg, 2016. "Overcoming global water reuse barriers: the Windhoek experience," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 32(4), pages 622-636, July.
    19. Battude, Marjorie & Al Bitar, Ahmad & Brut, Aurore & Tallec, Tiphaine & Huc, Mireille & Cros, Jérôme & Weber, Jean-Jacques & Lhuissier, Ludovic & Simonneaux, Vincent & Demarez, Valérie, 2017. "Modeling water needs and total irrigation depths of maize crop in the south west of France using high spatial and temporal resolution satellite imagery," Agricultural Water Management, Elsevier, vol. 189(C), pages 123-136.
    20. Diana Suhardiman & Mark Giordano, 2012. "Process-focused analysis in transboundary water governance research," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 12(3), pages 299-308, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:6:d:10.1007_s11269-016-1264-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.