IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i2d10.1007_s11269-015-1180-y.html
   My bibliography  Save this article

Optimizing Water Management for Irrigation Under Climate Uncertainty: Evaluating Operational and Structural Alternatives in the Lower Republican River Basin, Kansas, USA

Author

Listed:
  • A. E. Brookfield

    (University of Kansas)

  • C. Gnau

    (Kansas Water Office)

Abstract

Structural and operational management methods are used to meet water demands in watersheds around the world. Most river systems are affected by reservoirs, dams, or other engineering structures, and decisions regarding their construction and operation are made in advance of knowing what water demands will be. Numerical models are used to predict future water needs and evaluate the effectiveness of water management strategies. It is important to consider a variety of management methods and future environmental conditions to ensure future demands can be met. In this work, a coupled surface water operations and hydrologic model of the Lower Republican River Basin in portions of Nebraska and Kansas, USA is used to evaluate the ability of several water management strategies, including structural and operational, to meet future demands of a water-stressed agricultural basin under a variety of future climate scenarios. Simulations indicate recent administrative and operational changes to the distribution of water between Nebraska and Kansas have significantly decreased water shortages for irrigation districts in Kansas and will continue to do so. Simulations also indicate that structural alternative of reservoir expansion is most effective at minimizing shortages to demands under a repeat of historical climate conditions. However, an operational alternative of increasing water supplies for Kansas' exclusive use, such as those historically purchased under the Warren Act (US Code 43 Section 523–524), is most effective at minimizing shortages to demands under a hotter and drier climate, demonstrating how optimal water management strategies can vary significantly depending upon climate scenario.

Suggested Citation

  • A. E. Brookfield & C. Gnau, 2016. "Optimizing Water Management for Irrigation Under Climate Uncertainty: Evaluating Operational and Structural Alternatives in the Lower Republican River Basin, Kansas, USA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 607-622, January.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:2:d:10.1007_s11269-015-1180-y
    DOI: 10.1007/s11269-015-1180-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-015-1180-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-015-1180-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Xiao-Yun Chen, 2015. "Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2655-2675, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ajay Singh, 2016. "Optimal Allocation of Resources for Increasing Farm Revenue under Hydrological Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2569-2580, May.
    2. Gökçen Uysal & Dirk Schwanenberg & Rodolfo Alvarado-Montero & Aynur Şensoy, 2018. "Short Term Optimal Operation of Water Supply Reservoir under Flood Control Stress using Model Predictive Control," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 583-597, January.
    3. Wencong Yue & Zhongqi Liu & Meirong Su & Meng Xu & Qiangqiang Rong & Chao Xu & Zhenkun Tan & Xuming Jiang & Zhixin Su & Yanpeng Cai, 2022. "Inclusion of Ecological Water Requirements in Optimization of Water Resource Allocation Under Changing Climatic Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 551-570, January.
    4. A. E. Brookfield & A. L. Layzell, 2019. "Simulating the Effects of Reservoir Management Strategies on Fluvial Erosion," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 4983-4995, December.
    5. N. Maier & J. Dietrich, 2016. "Using SWAT for Strategic Planning of Basin Scale Irrigation Control Policies: a Case Study from a Humid Region in Northern Germany," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3285-3298, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salman Sharifazari & Shahab Araghinejad, 2015. "Development of a Nonparametric Model for Multivariate Hydrological Monthly Series Simulation Considering Climate Change Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5309-5322, November.
    2. Mohammad Zounemat-Kermani, 2016. "Investigating Chaos and Nonlinear Forecasting in Short Term and Mid-term River Discharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1851-1865, March.
    3. Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
    4. Vidhi Vig & Anmol Kaur, 2022. "Time series forecasting and mathematical modeling of COVID-19 pandemic in India: a developing country struggling to cope up," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2920-2933, December.
    5. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Lin Qiu & Can-can Liu, 2017. "The Annual Maximum Flood Peak Discharge Forecasting Using Hermite Projection Pursuit Regression with SSO and LS Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 461-477, January.
    6. Baoying Shan & Ping Guo & Shanshan Guo & Zhong Li, 2019. "A Price-Forecast-Based Irrigation Scheduling Optimization Model under the Response of Fruit Quality and Price to Water," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    7. Liangxu Liu & Xueyong Zhao & Qinglan Meng & He Zhao & Xiaoqian Lu & Junkai Gao & Xueli Chang, 2017. "Annual Precipitation Fluctuation and Spatial Differentiation Characteristics of the Horqin Region," Sustainability, MDPI, vol. 9(1), pages 1-16, January.
    8. Ali Danandeh Mehr & Vahid Nourani, 2018. "Season Algorithm-Multigene Genetic Programming: A New Approach for Rainfall-Runoff Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2665-2679, June.
    9. Fu Qiao, 2020. "Study on Price Fluctuation of Industry Index in Chinas Stock Market Based on Empirical Mode Decomposition," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 10(5), pages 559-573, May.
    10. Parisa-Sadat Ashofteh & Taher Rajaee & Parvin Golfam, 2017. "Assessment of Water Resources Development Projects under Conditions of Climate Change Using Efficiency Indexes (EIs)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3723-3744, September.
    11. Ervin Shan Khai Tiu & Yuk Feng Huang & Jing Lin Ng & Nouar AlDahoul & Ali Najah Ahmed & Ahmed Elshafie, 2022. "An evaluation of various data pre-processing techniques with machine learning models for water level prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 121-153, January.
    12. Zhong-kai Feng & Wen-jing Niu & Zhi-qiang Jiang & Hui Qin & Zhen-guo Song, 2020. "Monthly Operation Optimization of Cascade Hydropower Reservoirs with Dynamic Programming and Latin Hypercube Sampling for Dimensionality Reduction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 2029-2041, April.
    13. Fan, Xinying, 2022. "A method for the generation of typical meteorological year data using ensemble empirical mode decomposition for different climates of China and performance comparison analysis," Energy, Elsevier, vol. 240(C).
    14. Zong-chang Yang, 2018. "Predictive Modeling of Hourly Water-Level Fluctuations Based on the DCT Least-Squares Extended Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1117-1131, February.
    15. Peng Chen & Andrew Vivian & Cheng Ye, 2022. "Forecasting carbon futures price: a hybrid method incorporating fuzzy entropy and extreme learning machine," Annals of Operations Research, Springer, vol. 313(1), pages 559-601, June.
    16. Emanuele Ogliari & Alfredo Nespoli & Marco Mussetta & Silvia Pretto & Andrea Zimbardo & Nicholas Bonfanti & Manuele Aufiero, 2020. "A Hybrid Method for the Run-Of-The-River Hydroelectric Power Plant Energy Forecast: HYPE Hydrological Model and Neural Network," Forecasting, MDPI, vol. 2(4), pages 1-19, October.
    17. Yun Bai & Nejc Bezak & Klaudija Sapač & Mateja Klun & Jin Zhang, 2019. "Short-Term Streamflow Forecasting Using the Feature-Enhanced Regression Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4783-4797, November.
    18. Wang, Deyun & Luo, Hongyuan & Grunder, Olivier & Lin, Yanbing, 2017. "Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction," Renewable Energy, Elsevier, vol. 113(C), pages 1345-1358.
    19. Jihong Xiao & Xuehong Zhu & Chuangxia Huang & Xiaoguang Yang & Fenghua Wen & Meirui Zhong, 2019. "A New Approach for Stock Price Analysis and Prediction Based on SSA and SVM," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 287-310, January.
    20. Wen-jing Niu & Zhong-kai Feng & Yu-rong Li & Shuai Liu, 2021. "Cooperation Search Algorithm for Power Generation Production Operation Optimization of Cascade Hydropower Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2465-2485, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:2:d:10.1007_s11269-015-1180-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.