IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v164y2018icp575-593.html
   My bibliography  Save this article

A combination model with variable weight optimization for short-term electrical load forecasting

Author

Listed:
  • Li, Wei-Qin
  • Chang, Li

Abstract

The present study establishes a robust combination forecasting model and achieves the accurate prediction of electrical load by considering the dependency of the load series and the meteorological factors. On this basis, the culture particle swarm optimization algorithm is developed to improve the accuracy of the forecast. The merit is that by the particle mutation strategy, parameter adjustment strategy dependent on the fitness and the knowledge updating strategy, particles are avoided to trap in local optimum, consequently improving the computational speed and performance. Moreover, the data preprocessing technology based on the EEMD is proposed to reduce the random noises of the load series and to improve the robust of the forecasting model. The anomaly detection model is proposed in view of the probability distribution of relative errors. To assess the applicability and accuracy of the proposed model, it is compared with ant colony optimization, genetic algorithm, simulated annealing approach, cuckoo search algorithm, differential evaluation and artificial cooperative search. Results validated by the actual data sets for Shaanxi province, China, show higher accuracy and better reliability of the proposed model in comparison with other optimization models.

Suggested Citation

  • Li, Wei-Qin & Chang, Li, 2018. "A combination model with variable weight optimization for short-term electrical load forecasting," Energy, Elsevier, vol. 164(C), pages 575-593.
  • Handle: RePEc:eee:energy:v:164:y:2018:i:c:p:575-593
    DOI: 10.1016/j.energy.2018.09.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218317870
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.09.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
    2. Wang, Yuanyuan & Wang, Jianzhou & Zhao, Ge & Dong, Yao, 2012. "Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: A case study of China," Energy Policy, Elsevier, vol. 48(C), pages 284-294.
    3. Wang, Jianzhou & Jia, Ruiling & Zhao, Weigang & Wu, Jie & Dong, Yao, 2012. "Application of the largest Lyapunov exponent and non-linear fractal extrapolation algorithm to short-term load forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1277-1287.
    4. Cheng-Wen Lee & Bing-Yi Lin, 2016. "Application of Hybrid Quantum Tabu Search with Support Vector Regression (SVR) for Load Forecasting," Energies, MDPI, vol. 9(11), pages 1-16, October.
    5. Canyurt, Olcay Ersel & Ozturk, Harun Kemal, 2008. "Application of genetic algorithm (GA) technique on demand estimation of fossil fuels in Turkey," Energy Policy, Elsevier, vol. 36(7), pages 2562-2569, July.
    6. Luis Hernandez & Carlos Baladrón & Javier M. Aguiar & Belén Carro & Antonio J. Sanchez-Esguevillas & Jaime Lloret, 2013. "Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks," Energies, MDPI, vol. 6(3), pages 1-24, March.
    7. Goia, Aldo & May, Caterina & Fusai, Gianluca, 2010. "Functional clustering and linear regression for peak load forecasting," International Journal of Forecasting, Elsevier, vol. 26(4), pages 700-711, October.
    8. Liu, Nian & Tang, Qingfeng & Zhang, Jianhua & Fan, Wei & Liu, Jie, 2014. "A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids," Applied Energy, Elsevier, vol. 129(C), pages 336-345.
    9. Kaboli, S. Hr. Aghay & Selvaraj, J. & Rahim, N.A., 2016. "Long-term electric energy consumption forecasting via artificial cooperative search algorithm," Energy, Elsevier, vol. 115(P1), pages 857-871.
    10. Wang, Jianjun & Li, Li & Niu, Dongxiao & Tan, Zhongfu, 2012. "An annual load forecasting model based on support vector regression with differential evolution algorithm," Applied Energy, Elsevier, vol. 94(C), pages 65-70.
    11. Amjady, N. & Keynia, F., 2009. "Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm," Energy, Elsevier, vol. 34(1), pages 46-57.
    12. Felix O Martinez-Rios & Juan Frausto-Solis, 2012. "A Simulated Annealing Algorithm for the Satisfiability Problem Using Dynamic Markov Chains with Linear Regression Equilibrium," Chapters, in: Marcos S.G. Tsuzuki (ed.), Simulated Annealing - Advances, Applications and Hybridizations, IntechOpen.
    13. Kaboli, S. Hr. Aghay & Fallahpour, A. & Selvaraj, J. & Rahim, N.A., 2017. "Long-term electrical energy consumption formulating and forecasting via optimized gene expression programming," Energy, Elsevier, vol. 126(C), pages 144-164.
    14. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Xiao-Yun Chen, 2015. "Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2655-2675, June.
    15. Xiao, Liye & Wang, Jianzhou & Hou, Ru & Wu, Jie, 2015. "A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting," Energy, Elsevier, vol. 82(C), pages 524-549.
    16. Önkal, Dilek & Zeynep Sayım, K. & Lawrence, Michael, 2012. "Wisdom of group forecasts: Does role-playing play a role?," Omega, Elsevier, vol. 40(6), pages 693-702.
    17. Mideksa, Torben K. & Kallbekken, Steffen, 2010. "The impact of climate change on the electricity market: A review," Energy Policy, Elsevier, vol. 38(7), pages 3579-3585, July.
    18. Wang, Jianzhou & Zhu, Suling & Zhang, Wenyu & Lu, Haiyan, 2010. "Combined modeling for electric load forecasting with adaptive particle swarm optimization," Energy, Elsevier, vol. 35(4), pages 1671-1678.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Dongchuan & Guo, Ju-e & Li, Yanzhao & Sun, Shaolong & Wang, Shouyang, 2023. "Short-term load forecasting with an improved dynamic decomposition-reconstruction-ensemble approach," Energy, Elsevier, vol. 263(PA).
    2. Talaat, M. & Farahat, M.A. & Mansour, Noura & Hatata, A.Y., 2020. "Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach," Energy, Elsevier, vol. 196(C).
    3. Haoran Zhao & Sen Guo, 2021. "Uncertain Interval Forecasting for Combined Electricity-Heat-Cooling-Gas Loads in the Integrated Energy System Based on Multi-Task Learning and Multi-Kernel Extreme Learning Machine," Mathematics, MDPI, vol. 9(14), pages 1-32, July.
    4. Tayab, Usman Bashir & Zia, Ali & Yang, Fuwen & Lu, Junwei & Kashif, Muhammad, 2020. "Short-term load forecasting for microgrid energy management system using hybrid HHO-FNN model with best-basis stationary wavelet packet transform," Energy, Elsevier, vol. 203(C).
    5. Li, Chen, 2020. "Designing a short-term load forecasting model in the urban smart grid system," Applied Energy, Elsevier, vol. 266(C).
    6. Zhang, Jinliang & Siya, Wang & Zhongfu, Tan & Anli, Sun, 2023. "An improved hybrid model for short term power load prediction," Energy, Elsevier, vol. 268(C).
    7. Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
    8. Wu, Jinran & Cui, Zhesen & Chen, Yanyan & Kong, Demeng & Wang, You-Gan, 2019. "A new hybrid model to predict the electrical load in five states of Australia," Energy, Elsevier, vol. 166(C), pages 598-609.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Liye & Shao, Wei & Liang, Tulu & Wang, Chen, 2016. "A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting," Applied Energy, Elsevier, vol. 167(C), pages 135-153.
    2. Xiao, Liye & Shao, Wei & Wang, Chen & Zhang, Kequan & Lu, Haiyan, 2016. "Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting," Applied Energy, Elsevier, vol. 180(C), pages 213-233.
    3. Xiao, Liye & Wang, Jianzhou & Hou, Ru & Wu, Jie, 2015. "A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting," Energy, Elsevier, vol. 82(C), pages 524-549.
    4. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    5. Chengshi Tian & Yan Hao, 2018. "A Novel Nonlinear Combined Forecasting System for Short-Term Load Forecasting," Energies, MDPI, vol. 11(4), pages 1-34, March.
    6. Zhang, Jinliang & Wei, Yi-Ming & Li, Dezhi & Tan, Zhongfu & Zhou, Jianhua, 2018. "Short term electricity load forecasting using a hybrid model," Energy, Elsevier, vol. 158(C), pages 774-781.
    7. Kaboli, S. Hr. Aghay & Selvaraj, J. & Rahim, N.A., 2016. "Long-term electric energy consumption forecasting via artificial cooperative search algorithm," Energy, Elsevier, vol. 115(P1), pages 857-871.
    8. Kaboli, S. Hr. Aghay & Fallahpour, A. & Selvaraj, J. & Rahim, N.A., 2017. "Long-term electrical energy consumption formulating and forecasting via optimized gene expression programming," Energy, Elsevier, vol. 126(C), pages 144-164.
    9. Ping Jiang & Zeng Wang & Kequan Zhang & Wendong Yang, 2017. "An Innovative Hybrid Model Based on Data Pre-Processing and Modified Optimization Algorithm and Its Application in Wind Speed Forecasting," Energies, MDPI, vol. 10(7), pages 1-29, July.
    10. Xiao, Liye & Shao, Wei & Yu, Mengxia & Ma, Jing & Jin, Congjun, 2017. "Research and application of a combined model based on multi-objective optimization for electrical load forecasting," Energy, Elsevier, vol. 119(C), pages 1057-1074.
    11. Wang, Zheng-Xin & Li, Qin & Pei, Ling-Ling, 2018. "A seasonal GM(1,1) model for forecasting the electricity consumption of the primary economic sectors," Energy, Elsevier, vol. 154(C), pages 522-534.
    12. Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
    13. Zhang, Jinliang & Siya, Wang & Zhongfu, Tan & Anli, Sun, 2023. "An improved hybrid model for short term power load prediction," Energy, Elsevier, vol. 268(C).
    14. Yuewei Liu & Shenghui Zhang & Xuejun Chen & Jianzhou Wang, 2018. "Artificial Combined Model Based on Hybrid Nonlinear Neural Network Models and Statistics Linear Models—Research and Application for Wind Speed Forecasting," Sustainability, MDPI, vol. 10(12), pages 1-30, December.
    15. He, Yaoyao & Liu, Rui & Li, Haiyan & Wang, Shuo & Lu, Xiaofen, 2017. "Short-term power load probability density forecasting method using kernel-based support vector quantile regression and Copula theory," Applied Energy, Elsevier, vol. 185(P1), pages 254-266.
    16. Li, Jingrui & Wang, Rui & Wang, Jianzhou & Li, Yifan, 2018. "Analysis and forecasting of the oil consumption in China based on combination models optimized by artificial intelligence algorithms," Energy, Elsevier, vol. 144(C), pages 243-264.
    17. Li, Chuan & Tao, Ying & Ao, Wengang & Yang, Shuai & Bai, Yun, 2018. "Improving forecasting accuracy of daily enterprise electricity consumption using a random forest based on ensemble empirical mode decomposition," Energy, Elsevier, vol. 165(PB), pages 1220-1227.
    18. Song, Jingjing & Wang, Jianzhou & Lu, Haiyan, 2018. "A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 215(C), pages 643-658.
    19. Tascikaraoglu, Akin & Sanandaji, Borhan M. & Poolla, Kameshwar & Varaiya, Pravin, 2016. "Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform," Applied Energy, Elsevier, vol. 165(C), pages 735-747.
    20. Miloš Božić & Miloš Stojanović & Zoran Stajić & Dragan Tasić, 2013. "A New Two-Stage Approach to Short Term Electrical Load Forecasting," Energies, MDPI, vol. 6(4), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:164:y:2018:i:c:p:575-593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.