IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i8p2903-2921.html
   My bibliography  Save this article

Increasing Water Security: An Algorithm to Improve Water Distribution Performance

Author

Listed:
  • Sara Nazif
  • Mohammad Karamouz
  • Mohsen Yousefi
  • Zahra Zahmatkesh

Abstract

Water Distribution Systems (WDSs) are indispensable infrastructures for urban societies. Due to vitality of continuous supply of drinking water in urban areas, it is necessary to have a performance evaluation and monitoring system to provide the expected level of security in water distribution systems. A main weakness point of these systems is the physical break of pipes which results in high level of water loss, pollution risk and public unsatisfactory. In this study, a framework is developed to increase physical water supply security in urban areas. For this purpose, a physical vulnerability index (PVI) is developed for evaluation of physical statues of water mains. In quantifying PVI, pipe characteristics and bedding soil specifications are considered. The importance of these factors on PVI is determined using Analytical Hierarchy Process (AHP). In system performance evaluation, the pipe role in system performance is incorporated regarding pipe location in WDS, distance of pipe from reservoir and average pressure of pipe. Then, System Physical Performance Index (SPVI) is evaluated. An optimization algorithm is employed to determine ways to improve the system performance through enhancing the physical condition of the pipe in the system at a minimum cost. The genetic algorithm is employed for solving the optimization model. A global sensitivity analysis method named FAST, is used for sensitivity analysis to incorporate the correlation between different parameters in analysis. The proposed framework is applied to a case study located in Tehran metropolitan area. The results of this study show the significant value of the proposed algorithm in supporting decision makers to better choose vulnerable pipes for rehabilitation practices in order to decrease system vulnerability against physical failures. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Sara Nazif & Mohammad Karamouz & Mohsen Yousefi & Zahra Zahmatkesh, 2013. "Increasing Water Security: An Algorithm to Improve Water Distribution Performance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2903-2921, June.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:8:p:2903-2921
    DOI: 10.1007/s11269-013-0323-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-013-0323-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-013-0323-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sara Nazif & Mohammad Karamouz & Massoud Tabesh & Ali Moridi, 2010. "Pressure Management Model for Urban Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(3), pages 437-458, February.
    2. Xu, C. & Gertner, G., 2007. "Extending a global sensitivity analysis technique to models with correlated parameters," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5579-5590, August.
    3. Jorge Pinto & Humberto Varum & Isabel Bentes & Jitendra Agarwal, 2010. "A Theory of Vulnerability of Water Pipe Network (TVWPN)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4237-4254, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agathoklis Agathokleous & Chrystalleni Christodoulou & Symeon E. Christodoulou, 2017. "Topological Robustness and Vulnerability Assessment of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 4007-4021, September.
    2. Deliang Sun & Jianping Wu & Fengtai Zhang & Weici Su & Hong Hui, 2018. "Evaluating Water Resource Security in Karst Areas Using DPSIRM Modeling, Gray Correlation, and Matter–Element Analysis," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    3. Hassan Tolba Aboelnga & Lars Ribbe & Franz-Bernd Frechen & Jamal Saghir, 2019. "Urban Water Security: Definition and Assessment Framework," Resources, MDPI, vol. 8(4), pages 1-19, November.
    4. Amir Nafi & Jacques Tcheng & Patrick Beau, 2015. "Comprehensive Methodology for Overall Performance Assessment of Water Utilities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5429-5450, December.
    5. Farid Saberi-Movahed & Mohammad Najafzadeh & Adel Mehrpooya, 2020. "Receiving More Accurate Predictions for Longitudinal Dispersion Coefficients in Water Pipelines: Training Group Method of Data Handling Using Extreme Learning Machine Conceptions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 529-561, January.
    6. Imad Antoine Ibrahim, 2020. "Legal Implications of the Use of Big Data in the Transboundary Water Context," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1139-1153, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agathoklis Agathokleous & Chrystalleni Christodoulou & Symeon E. Christodoulou, 2017. "Topological Robustness and Vulnerability Assessment of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 4007-4021, September.
    2. Kang, Fenni & Cournède, Paul-Henry & Lecoeur, Jérémie & Letort, Véronique, 2014. "SUNLAB: A functional–structural model for genotypic and phenotypic characterization of the sunflower crop," Ecological Modelling, Elsevier, vol. 290(C), pages 21-33.
    3. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    4. Chi Zhang & Yuntao Wang & Yu Li & Wei Ding, 2017. "Vulnerability Analysis of Urban Drainage Systems: Tree vs. Loop Networks," Sustainability, MDPI, vol. 9(3), pages 1-18, March.
    5. D. Mora-Melia & P. Iglesias-Rey & F. Martinez-Solano & V. Fuertes-Miquel, 2013. "Design of Water Distribution Networks using a Pseudo-Genetic Algorithm and Sensitivity of Genetic Operators," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4149-4162, September.
    6. Aditya Gupta & K. D. Kulat, 2018. "A Selective Literature Review on Leak Management Techniques for Water Distribution System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3247-3269, August.
    7. Zhai, Qingqing & Yang, Jun & Zhao, Yu, 2014. "Space-partition method for the variance-based sensitivity analysis: Optimal partition scheme and comparative study," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 66-82.
    8. Sinagra, Marco & Aricò, Costanza & Tucciarelli, Tullio & Morreale, Gabriele, 2020. "Experimental and numerical analysis of a backpressure Banki inline turbine for pressure regulation and energy production," Renewable Energy, Elsevier, vol. 149(C), pages 980-986.
    9. Hamenoo, Emma Seyram, 2024. "Social workers’ perspective on the impact of Covid-19 on clients’ vulnerability in Ghana," Children and Youth Services Review, Elsevier, vol. 160(C).
    10. Song, Xiaodong & Bryan, Brett A. & Almeida, Auro C. & Paul, Keryn I. & Zhao, Gang & Ren, Yin, 2013. "Time-dependent sensitivity of a process-based ecological model," Ecological Modelling, Elsevier, vol. 265(C), pages 114-123.
    11. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    12. Qiang Xu & Qiuwen Chen & Jinfeng Ma & Koen Blanckaert & Zhonghua Wan, 2014. "Water Saving and Energy Reduction through Pressure Management in Urban Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3715-3726, September.
    13. Roberto Magini & Manuela Moretti & Maria Antonietta Boniforti & Roberto Guercio, 2023. "A Machine-Learning Approach for Monitoring Water Distribution Networks (WDNs)," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    14. Aditya Gupta & Neeraj Bokde & K. D. Kulat, 2018. "Hybrid Leakage Management for Water Network Using PSF Algorithm and Soft Computing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1133-1151, February.
    15. Gustavo Meirelles & Daniel Manzi & Bruno Brentan & Thaisa Goulart & Edevar Luvizotto, 2017. "Calibration Model for Water Distribution Network Using Pressures Estimated by Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4339-4351, October.
    16. Salvador Saz-Salazar & Miguel García-Rubio & Francisco González-Gómez & Andrés Picazo-Tadeo, 2016. "Managing Water Resources Under Conditions of Scarcity: On Consumers’ Willingness to Pay for Improving Water Supply Infrastructure," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1723-1738, March.
    17. Enrico Creaco & Marco Franchini & Stefano Alvisi, 2010. "Optimal Placement of Isolation Valves in Water Distribution Systems Based on Valve Cost and Weighted Average Demand Shortfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4317-4338, December.
    18. Suwan Park, 2011. "Estimating the Timing of the Economical Replacement of Water Mains Based on the Predicted Pipe Break Times Using the Proportional Hazards Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2509-2524, August.
    19. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    20. Abbas Afshar & Hamideh Kazemi & Motahareh Saadatpour, 2011. "Particle Swarm Optimization for Automatic Calibration of Large Scale Water Quality Model (CE-QUAL-W2): Application to Karkheh Reservoir, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2613-2632, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:8:p:2903-2921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.