IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v26y2012i6p1591-1613.html
   My bibliography  Save this article

The use of NDVI and its Derivatives for Monitoring Lake Victoria’s Water Level and Drought Conditions

Author

Listed:
  • Paul Omute
  • Rob Corner
  • Joseph Awange

Abstract

Normalized Difference Vegetation Index (NDVI), which is a measure of vegetation vigour, and lake water levels respond variably to precipitation and its deficiency. For a given lake catchment, NDVI may have the ability to depict localized natural variability in water levels in response to weather patterns. This information may be used to decipher natural from unnatural variations of a given lake’s surface. This study evaluates the potential of using NDVI and its associated derivatives (VCI (vegetation condition index), SVI (standardised vegetation index), AINDVI (annually integrated NDVI), green vegetation function (F g ), and NDVIA (NDVI anomaly)) to depict Lake Victoria’s water levels. Thirty years of monthly mean water levels and a portion of the Global Inventory Modelling and Mapping Studies (GIMMS) AVHRR (Advanced Very High Resolution Radiometer) NDVI datasets were used. Their aggregate data structures and temporal co-variabilities were analysed using GIS/spatial analysis tools. Locally, NDVI was found to be more sensitive to drought (i.e., responded more strongly to reduced precipitation) than to water levels. It showed a good ability to depict water levels one-month in advance, especially in moderate to low precipitation years. SVI and SWL (standardized water levels) used in association with AINDVI and AMWLA (annual mean water levels anomaly) readily identified high precipitation years, which are also when NDVI has a low ability to depict water levels. NDVI also appears to be able to highlight unnatural variations in water levels. We propose an iterative approach for the better use of NDVI, which may be useful in developing an early warning mechanisms for the management of lake Victoria and other Lakes with similar characteristics. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Paul Omute & Rob Corner & Joseph Awange, 2012. "The use of NDVI and its Derivatives for Monitoring Lake Victoria’s Water Level and Drought Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1591-1613, April.
  • Handle: RePEc:spr:waterr:v:26:y:2012:i:6:p:1591-1613
    DOI: 10.1007/s11269-011-9974-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-011-9974-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-011-9974-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lawrence Kiage & Nan Walker, 2009. "Using NDVI from MODIS to Monitor Duckweed Bloom in Lake Maracaibo, Venezuela," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(6), pages 1125-1135, April.
    2. Liangang Chen & Xin Qian & Yong Shi, 2011. "Critical Area Identification of Potential Soil Loss in a Typical Watershed of the Three Gorges Reservoir Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3445-3463, October.
    3. Narendra Gontia & Kamlesh Tiwari, 2010. "Estimation of Crop Coefficient and Evapotranspiration of Wheat (Triticum aestivum) in an Irrigation Command Using Remote Sensing and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1399-1414, May.
    4. McVicar, Tim R. & Jupp, David L. B., 1998. "The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia: a review," Agricultural Systems, Elsevier, vol. 57(3), pages 399-468, July.
    5. N. Subash & H. Mohan, 2011. "A Simple Rationally Integrated Drought Indicator for Rice–Wheat Productivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2425-2447, August.
    6. Giuseppe Mendicino & Pasquale Versace, 2007. "Integrated Drought Watch System: A Case Study in Southern Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(8), pages 1409-1428, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Moyang & Hamilton, Serena H. & Jakeman, Anthony J. & Lerat, Julien & Savage, Callum & Croke, Barry F.W., 2024. "Assessing the contribution of hydrologic and climatic factors on vegetation condition changes in semi-arid wetlands: An analysis for the Narran Lakes," Ecological Modelling, Elsevier, vol. 487(C).
    2. Vasile Jitariu & Alexandru Dorosencu & Pavel Ichim & Constantin Ion, 2022. "Severe Drought Monitoring by Remote Sensing Methods and Its Impact on Wetlands Birds Assemblages in Nuntași and Tuzla Lakes (Danube Delta Biosphere Reserve)," Land, MDPI, vol. 11(5), pages 1-18, April.
    3. Amir Hatamkhani & Ali Moridi, 2023. "A Simulation Optimization Approach for Wetland Conservation and Management in an Agricultural Basin," Sustainability, MDPI, vol. 15(18), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mokhtari, Ali & Noory, Hamideh & Vazifedoust, Majid & Bahrami, Mahdi, 2018. "Estimating net irrigation requirement of winter wheat using model- and satellite-based single and basal crop coefficients," Agricultural Water Management, Elsevier, vol. 208(C), pages 95-106.
    2. Lu Zhuo & Dawei Han & Qiang Dai & Tanvir Islam & Prashant Srivastava, 2015. "Appraisal of NLDAS-2 Multi-Model Simulated Soil Moistures for Hydrological Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3503-3517, August.
    3. Shengyuan Zhu & Yinglei Wu & Xiaoshuang Ma, 2023. "Deep Learning-Based Algal Bloom Identification Method from Remote Sensing Images—Take China’s Chaohu Lake as an Example," Sustainability, MDPI, vol. 15(5), pages 1-14, March.
    4. Lampros Vasiliades & Athanasios Loukas & Nikos Liberis, 2011. "A Water Balance Derived Drought Index for Pinios River Basin, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1087-1101, March.
    5. Mohamed Elhag & Aris Psilovikos & Ioannis Manakos & Kostas Perakis, 2011. "Application of the Sebs Water Balance Model in Estimating Daily Evapotranspiration and Evaporative Fraction from Remote Sensing Data Over the Nile Delta," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2731-2742, September.
    6. Gowhar Meraj & Shakil Romshoo & A. Yousuf & Sadaff Altaf & Farrukh Altaf, 2015. "Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 153-175, May.
    7. X. Zhang & Y. Yamaguchi, 2014. "Characterization and evaluation of MODIS-derived Drought Severity Index (DSI) for monitoring the 2009/2010 drought over southwestern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 2129-2145, December.
    8. Xian Guan & Jonathan Li & William Booty, 2011. "Monitoring Lake Simcoe Water Clarity Using Landsat-5 TM Images," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(8), pages 2015-2033, June.
    9. Segovia-Cardozo, Daniel Alberto & Rodríguez-Sinobas, Leonor & Zubelzu, Sergio, 2019. "Water use efficiency of corn among the irrigation districts across the Duero river basin (Spain): Estimation of local crop coefficients by satellite images," Agricultural Water Management, Elsevier, vol. 212(C), pages 241-251.
    10. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    11. Sergio Vicente-Serrano, 2007. "Evaluating the Impact of Drought Using Remote Sensing in a Mediterranean, Semi-arid Region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(1), pages 173-208, January.
    12. Usman Awan & Bernhard Tischbein & Christopher Conrad & Christopher Martius & Mohsin Hafeez, 2011. "Remote Sensing and Hydrological Measurements for Irrigation Performance Assessments in a Water User Association in the Lower Amu Darya River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2467-2485, August.
    13. Shao, Guomin & Han, Wenting & Zhang, Huihui & Liu, Shouyang & Wang, Yi & Zhang, Liyuan & Cui, Xin, 2021. "Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices," Agricultural Water Management, Elsevier, vol. 252(C).
    14. Yi Cai & Yasuhiro Mitani & Hiro Ikemi & Shuguang Liu, 2012. "Effect of Precipitation Timescale Selection on Tempo-spatial Assessment of Paddy Water Demand in Chikugo-Saga Plain, Japan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1731-1746, April.
    15. A. Capra & S. Consoli & B. Scicolone, 2013. "Long-Term Climatic Variability in Calabria and Effects on Drought and Agrometeorological Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 601-617, January.
    16. Mohamed Kharrou & Michel Le Page & Ahmed Chehbouni & Vincent Simonneaux & Salah Er-Raki & Lionel Jarlan & Lahcen Ouzine & Said Khabba & Ghani Chehbouni, 2013. "Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4697-4714, October.
    17. Changchun Xu & Xicheng Zhang & Jinxia Zhang & Yapeng Chen & Teshome L. Yami & Yang Hong, 2021. "Estimation of Crop Water Requirement Based on Planting Structure Extraction from Multi-Temporal MODIS EVI," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2231-2247, May.
    18. Hone-Jay Chu & Mạnh Van Nguyen & Lalu Muhamad Jaelani, 2020. "Satellite-Based Water Quality Mapping from Sequential Simulation with Parameter Outlier Removal," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 311-325, January.
    19. Shao, Guomin & Han, Wenting & Zhang, Huihui & Zhang, Liyuan & Wang, Yi & Zhang, Yu, 2023. "Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods," Agricultural Water Management, Elsevier, vol. 276(C).
    20. Ouaadi, Nadia & Jarlan, Lionel & Khabba, Saïd & Le Page, Michel & Chakir, Adnane & Er-Raki, Salah & Frison, Pierre-Louis, 2023. "Are the C-band backscattering coefficient and interferometric coherence suitable substitutes of NDVI for the monitoring of the FAO-56 crop coefficient?," Agricultural Water Management, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:26:y:2012:i:6:p:1591-1613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.