IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i1d10.1007_s11269-019-02443-0.html
   My bibliography  Save this article

Satellite-Based Water Quality Mapping from Sequential Simulation with Parameter Outlier Removal

Author

Listed:
  • Hone-Jay Chu

    (National Cheng Kung University)

  • Mạnh Van Nguyen

    (National Cheng Kung University
    Vietnam Academy of Science and Technology)

  • Lalu Muhamad Jaelani

    (Institut Teknologi Sepuluh Nopember (ITS))

Abstract

The satellite-based regression model provides the data model that identifies water quality for inland and coastal waters. However, the satellite regression usually depends on the selection of observation, satellite data, and model type. A resampling simulation technique, such as sequential simulation using geographically weighted regression (GWR simulation), can be applied in generating multiple realizations for water quality estimation to reduce the sampling effect and consider spatial heterogeneity. Traditional models often result in considerable underestimation in extreme observations. The GWR simulation provides the best goodness of fit and spatial varying relationship between observed water quality and remote sensing considering parameter outlier and noise removal for parameter stability. This simulation model can increase the sampling diversity from various observations and reduce the neighboring effects of observations using outlier and noise removal. The model that handles spatial uncertainty and heterogeneity is a novel tool for inferring the characteristics of water quality from a series of sample subsets.

Suggested Citation

  • Hone-Jay Chu & Mạnh Van Nguyen & Lalu Muhamad Jaelani, 2020. "Satellite-Based Water Quality Mapping from Sequential Simulation with Parameter Outlier Removal," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 311-325, January.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:1:d:10.1007_s11269-019-02443-0
    DOI: 10.1007/s11269-019-02443-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02443-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02443-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven Farber & Antonio Páez, 2007. "A systematic investigation of cross-validation in GWR model estimation: empirical analysis and Monte Carlo simulations," Journal of Geographical Systems, Springer, vol. 9(4), pages 371-396, December.
    2. Lawrence Kiage & Nan Walker, 2009. "Using NDVI from MODIS to Monitor Duckweed Bloom in Lake Maracaibo, Venezuela," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(6), pages 1125-1135, April.
    3. Neamat Karimi & Mohammad Hossein Bagheri & Farhad Hooshyaripor & Ashkan Farokhnia & Sara Sheshangosht, 2016. "Deriving and Evaluating Bathymetry Maps and Stage Curves for Shallow Lakes Using Remote Sensing Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5003-5020, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shengyuan Zhu & Yinglei Wu & Xiaoshuang Ma, 2023. "Deep Learning-Based Algal Bloom Identification Method from Remote Sensing Images—Take China’s Chaohu Lake as an Example," Sustainability, MDPI, vol. 15(5), pages 1-14, March.
    2. Marco Helbich & Wolfgang Brunauer & Eric Vaz & Peter Nijkamp, 2014. "Spatial Heterogeneity in Hedonic House Price Models: The Case of Austria," Urban Studies, Urban Studies Journal Limited, vol. 51(2), pages 390-411, February.
    3. Sumit Agarwal & Ying Fan & Daniel P. McMillen & Tien Foo Sing, 2021. "Tracking the pulse of a city—3D real estate price heat maps," Journal of Regional Science, Wiley Blackwell, vol. 61(3), pages 543-569, June.
    4. N. Salvati & N. Tzavidis & M. Pratesi & R. Chambers, 2012. "Small area estimation via M-quantile geographically weighted regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 1-28, March.
    5. Xian Guan & Jonathan Li & William Booty, 2011. "Monitoring Lake Simcoe Water Clarity Using Landsat-5 TM Images," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(8), pages 2015-2033, June.
    6. Li, Mengya & Kwan, Mei-Po & Hu, Wenyan & Li, Rui & Wang, Jun, 2023. "Examining the effects of station-level factors on metro ridership using multiscale geographically weighted regression," Journal of Transport Geography, Elsevier, vol. 113(C).
    7. Luyao Wang & Hong Fan & Yankun Wang, 2018. "Estimation of consumption potentiality using VIIRS night-time light data," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-19, October.
    8. Christos Agiakloglou & Cleon Tsimbos & Apostolos Tsimpanos, 2019. "Evidence of spurious results along with spatially autocorrelated errors in the context of geographically weighted regression for two independent SAR(1) processes," Empirical Economics, Springer, vol. 57(5), pages 1613-1631, November.
    9. Antonio Páez & Fei Long & Steven Farber, 2008. "Moving Window Approaches for Hedonic Price Estimation: An Empirical Comparison of Modelling Techniques," Urban Studies, Urban Studies Journal Limited, vol. 45(8), pages 1565-1581, July.
    10. David C Wheeler, 2009. "Simultaneous Coefficient Penalization and Model Selection in Geographically Weighted Regression: The Geographically Weighted Lasso," Environment and Planning A, , vol. 41(3), pages 722-742, March.
    11. Annalina Sarra & Eugenia Nissi, 2020. "A Spatial Composite Indicator for Human and Ecosystem Well-Being in the Italian Urban Areas," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 148(2), pages 353-377, April.
    12. repec:rre:publsh:v:51:y:2021:i:2 is not listed on IDEAS
    13. Mary Margaret Ford & Linda D Highfield, 2016. "Exploring the Spatial Association between Social Deprivation and Cardiovascular Disease Mortality at the Neighborhood Level," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-17, January.
    14. M. Bárcena & P. Menéndez & M. Palacios & F. Tusell, 2014. "Alleviating the effect of collinearity in geographically weighted regression," Journal of Geographical Systems, Springer, vol. 16(4), pages 441-466, October.
    15. Moeltner, Klaus & Puri, Roshan & Johnston, Robert J. & Besedin, Elena & Balukas, Jessica & Le, Alyssa, 2022. "Locally Weighted Meta-Regression and Benefit Transfer," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322359, Agricultural and Applied Economics Association.
    16. Dongwoo Kang & Sandy Dall’erba, 2016. "Exploring the spatially varying innovation capacity of the US counties in the framework of Griliches’ knowledge production function: a mixed GWR approach," Journal of Geographical Systems, Springer, vol. 18(2), pages 125-157, April.
    17. Marques, Samuel de França & Pitombo, Cira Souza, 2023. "Local modeling as a solution to the lack of stop-level ridership data," Journal of Transport Geography, Elsevier, vol. 112(C).
    18. Antonio Páez, 2009. "Spatial analysis of economic systems and land use change," Papers in Regional Science, Wiley Blackwell, vol. 88(2), pages 251-258, June.
    19. Christopher Higgins & Pavlos Kanaroglou, 2018. "Rapid transit, transit-oriented development, and the contextual sensitivity of land value uplift in Toronto," Urban Studies, Urban Studies Journal Limited, vol. 55(10), pages 2197-2225, August.
    20. Antonio Páez & Steven Farber & David Wheeler, 2011. "A Simulation-Based Study of Geographically Weighted Regression as a Method for Investigating Spatially Varying Relationships," Environment and Planning A, , vol. 43(12), pages 2992-3010, December.
    21. Anping Chen & Marlon Boarnet & Mark Partridge & Wenjie Wu & Guanpeng Dong, 2014. "Valuing The “Green” Amenities In A Spatial Context," Journal of Regional Science, Wiley Blackwell, vol. 54(4), pages 569-585, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:1:d:10.1007_s11269-019-02443-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.