IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i11p3727-3743.html
   My bibliography  Save this article

Machine Learning Utilization for Bed Load Transport in Gravel-Bed Rivers

Author

Listed:
  • Vasileios Kitsikoudis
  • Epaminondas Sidiropoulos
  • Vlassios Hrissanthou

Abstract

Three data-driven techniques, namely artificial neural networks, adaptive-network-based fuzzy inference system, and symbolic regression based on genetic programming, are employed for the prediction of bed load transport rates in gravel-bed steep mountainous streams and rivers in Idaho (U.S.A.), and the potential of several input variables is investigated. The input combinations that were tested are based, mainly, on unit stream power, stream power, and shear stress, and exhibited similarly good performance, with respect to the machine learning technique used, accentuating the importance of the regression model. The derived models are robust, generalize very well in unseen data, and generated results superior to those of some of the widely used bed load formulae, without the need to set a threshold for the initiation of motion, and consequently avoid predicting erroneous zero transport rates. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Vasileios Kitsikoudis & Epaminondas Sidiropoulos & Vlassios Hrissanthou, 2014. "Machine Learning Utilization for Bed Load Transport in Gravel-Bed Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3727-3743, September.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:11:p:3727-3743
    DOI: 10.1007/s11269-014-0706-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0706-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0706-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gokmen Tayfur & Yashar Karimi & Vijay Singh, 2013. "Principle Component Analysis in Conjuction with Data Driven Methods for Sediment Load Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2541-2554, May.
    2. Einstein, Hans Albert, 1950. "The Bed-Load Function for Sediment Transportation in Open Channel Flows," Technical Bulletins 156389, United States Department of Agriculture, Economic Research Service.
    3. H. Azamathulla & Robert Jarrett, 2013. "Use of Gene-Expression Programming to Estimate Manning’s Roughness Coefficient for High Gradient Streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 715-729, February.
    4. M. Mustafa & R. Rezaur & S. Saiedi & M. Isa, 2012. "River Suspended Sediment Prediction Using Various Multilayer Perceptron Neural Network Training Algorithms—A Case Study in Malaysia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1879-1897, May.
    5. M. Mustafa & R. Rezaur & S. Saiedi & M. Isa, 2012. "Erratum to: River Suspended Sediment Prediction Using Various Multilayer Perceptron Neural Network Training Algorithms—A Case Study in Malaysia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 2123-2123, May.
    6. Aytac Guven & Özgür Kişi, 2011. "Estimation of Suspended Sediment Yield in Natural Rivers Using Machine-coded Linear Genetic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 691-704, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jenq-Tzong Shiau & Ting-Ju Chen, 2015. "Quantile Regression-Based Probabilistic Estimation Scheme for Daily and Annual Suspended Sediment Loads," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2805-2818, June.
    2. Isa Ebtehaj & Hossein Bonakdari, 2014. "Performance Evaluation of Adaptive Neural Fuzzy Inference System for Sediment Transport in Sewers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4765-4779, October.
    3. Ozgur Kisi & Coskun Ozkan, 2017. "A New Approach for Modeling Sediment-Discharge Relationship: Local Weighted Linear Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    2. Ozgur Kisi & Coskun Ozkan, 2017. "A New Approach for Modeling Sediment-Discharge Relationship: Local Weighted Linear Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 1-23, January.
    3. Gokmen Tayfur & Ata Nadiri & Asghar Moghaddam, 2014. "Supervised Intelligent Committee Machine Method for Hydraulic Conductivity Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1173-1184, March.
    4. C. Iglesias & J. Martínez Torres & P. García Nieto & J. Alonso Fernández & C. Díaz Muñiz & J. Piñeiro & J. Taboada, 2014. "Turbidity Prediction in a River Basin by Using Artificial Neural Networks: A Case Study in Northern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 319-331, January.
    5. Vanessa Sari & Nilza Maria Reis Castro & Olavo Correa Pedrollo, 2017. "Estimate of Suspended Sediment Concentration from Monitored Data of Turbidity and Water Level Using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4909-4923, December.
    6. Vahid Nourani & Amir Molajou & Ali Davanlou Tajbakhsh & Hessam Najafi, 2019. "A Wavelet Based Data Mining Technique for Suspended Sediment Load Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1769-1784, March.
    7. Anas Mahmood Al-Juboori & Aytac Guven, 2016. "Hydropower Plant Site Assessment by Integrated Hydrological Modeling, Gene Expression Programming and Visual Basic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2517-2530, May.
    8. S. Aggarwal & Arun Goel & Vijay Singh, 2012. "Stage and Discharge Forecasting by SVM and ANN Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3705-3724, October.
    9. Kundu, Snehasis, 2017. "Derivation of Hunt equation for suspension distribution using Shannon entropy theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 488(C), pages 96-111.
    10. Vesna Đukić & Zoran Radić, 2016. "Sensitivity Analysis of a Physically Based Distributed Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1669-1684, March.
    11. Rana Muhammad Adnan & Kulwinder Singh Parmar & Salim Heddam & Shamsuddin Shahid & Ozgur Kisi, 2021. "Suspended Sediment Modeling Using a Heuristic Regression Method Hybridized with Kmeans Clustering," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    12. Hazi Azamathulla & Aminuddin Ghani & Cheng Leow & Chun Chang & Nor Zakaria, 2011. "Gene-Expression Programming for the Development of a Stage-Discharge Curve of the Pahang River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2901-2916, September.
    13. Kazem Shahverdi & Hossein Talebmorad, 2023. "Automating HEC-RAS and Linking with Particle Swarm Optimizer to Calibrate Manning’s Roughness Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 975-993, January.
    14. Seydou Traore & Aytac Guven, 2012. "Regional-Specific Numerical Models of Evapotranspiration Using Gene-Expression Programming Interface in Sahel," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4367-4380, December.
    15. Asli Ulke & Gokmen Tayfur & Sevinc Ozkul, 2017. "Investigating a Suitable Empirical Model and Performing Regional Analysis for the Suspended Sediment Load Prediction in Major Rivers of the Aegean Region, Turkey," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 739-764, February.
    16. Junyu Zhang & Dafang Fu & Christian Urich & Rajendra Prasad Singh, 2018. "Accelerated Exploration for Long-Term Urban Water Infrastructure Planning through Machine Learning," Sustainability, MDPI, vol. 10(12), pages 1-16, December.
    17. Tabasum Rasool & A. Q. Dar & M. A. Wani, 2021. "Development of a Predictive Equation for Modelling the Infiltration Process Using Gene Expression Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1871-1888, April.
    18. Ozgur Kisi & Mohammad Zounemat-Kermani, 2016. "Suspended Sediment Modeling Using Neuro-Fuzzy Embedded Fuzzy c-Means Clustering Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3979-3994, September.
    19. Vesna Đukić & Zoran Radić, 2016. "Sensitivity Analysis of a Physically Based Distributed Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1669-1684, March.
    20. Levent Yilmaz, 2008. "Experimental Study of Sediment Transport in Meandering Channels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(2), pages 259-275, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:11:p:3727-3743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.