IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v301y2024ics0378377424002944.html
   My bibliography  Save this article

Multi-objective modeling and optimization of water distribution for canal system considering irrigation coverage in artesian irrigation district

Author

Listed:
  • Mai, Zijun
  • He, Yupu
  • Feng, Chen
  • Han, Congying
  • Shi, Yuanzhi
  • Qi, Wei

Abstract

Efficient water distribution within canal systems is essential for conserving water resources and enhancing irrigation efficiency, especially under conditions of constrained water supply. This study proposed an innovative optimization model for canal systems, incorporating the artesian irrigation rate as a multi-objective criterion. A digital elevation model was utilized to determine the irrigation coverage capacity based on outlet water levels, addressing existing limitations by introducing the artesian irrigation rate objective. A multi-objective optimization model was constructed, taking into account drainage loss, fluctuation of trunk canal flow, and artesian irrigation rate within irrigated areas. NSGAIII, with an effective correction strategy, and entropy weight method were used to solve the optimization problem under restricted flow constraints. The results indicate that the model's implementation has reduced the overall water conveyance time by 3 hours, decreased leakage losses by 1.3 %, elevated the water level of the branch canals, and increased the artesian irrigation rate by 4.5 %. The proposed objective enhances the flows within the branch canals and significantly ameliorates the rate of artesian irrigation under various flow limitation conditions.

Suggested Citation

  • Mai, Zijun & He, Yupu & Feng, Chen & Han, Congying & Shi, Yuanzhi & Qi, Wei, 2024. "Multi-objective modeling and optimization of water distribution for canal system considering irrigation coverage in artesian irrigation district," Agricultural Water Management, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424002944
    DOI: 10.1016/j.agwat.2024.108959
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424002944
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108959?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hassan-Esfahani, Leila & Torres-Rua, Alfonso & McKee, Mac, 2015. "Assessment of optimal irrigation water allocation for pressurized irrigation system using water balance approach, learning machines, and remotely sensed data," Agricultural Water Management, Elsevier, vol. 153(C), pages 42-50.
    2. Zhang, Chenglong & Li, Xuemin & Li, Gang & Dai, Xiaoqin & Huo, Zailin, 2023. "A simulation-based multi-objective two-level optimization decision-making approach for supporting balanced irrigation water management," Agricultural Water Management, Elsevier, vol. 284(C).
    3. Chao-Chung Yang & Liang-Cheng Chang & Chang-Shian Chen & Ming-Sheng Yeh, 2009. "Multi-objective Planning for Conjunctive Use of Surface and Subsurface Water Using Genetic Algorithm and Dynamics Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 417-437, February.
    4. Yan Li & Yifan Liu & Shasha Li & Leijie Qi & Jun Xie & Qing Xie, 2022. "A Novel Multi-Objective Optimal Design Method for Dry Iron Core Reactor by Incorporating NSGA-II, TOPSIS and Entropy Weight Method," Energies, MDPI, vol. 15(19), pages 1-15, October.
    5. Li, Jiang & Song, Jian & Li, Mo & Shang, Songhao & Mao, Xiaomin & Yang, Jian & Adeloye, Adebayo J., 2018. "Optimization of irrigation scheduling for spring wheat based on simulation-optimization model under uncertainty," Agricultural Water Management, Elsevier, vol. 208(C), pages 245-260.
    6. Zhang, Fuqiang & He, Chao & Yaqiong, Fan & Hao, Xinmei & Kang, Shaozhong, 2022. "Canal delivery and irrigation scheduling optimization based on crop water demand," Agricultural Water Management, Elsevier, vol. 260(C).
    7. Liao, Xiangcheng & Mahmoud, Ali & Hu, Tiesong & Wang, Jinglin, 2022. "A novel irrigation canal scheduling model adaptable to the spatial-temporal variability of water conveyance loss," Agricultural Water Management, Elsevier, vol. 274(C).
    8. Kong, Lingzhong & Li, Yueqiang & Tang, Hongwu & Yuan, Saiyu & Yang, Qian & Ji, Qingfeng & Li, Zhipeng & Chen, Ruibin, 2023. "Predictive control for the operation of cascade pumping stations in water supply canal systems considering energy consumption and costs," Applied Energy, Elsevier, vol. 341(C).
    9. Chen, Mengting & Cui, Yuanlai & Wang, Xiaonan & Xie, Hengwang & Liu, Fangping & Luo, Tongyuan & Zheng, Shizong & Luo, Yufeng, 2021. "A reinforcement learning approach to irrigation decision-making for rice using weather forecasts," Agricultural Water Management, Elsevier, vol. 250(C).
    10. Sara Azargashb Lord & Seied Mehdy Hashemy Shahdany & Abbas Roozbahani, 2021. "Minimization of Operational and Seepage Losses in Agricultural Water Distribution Systems Using the Ant Colony Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 827-846, February.
    11. Dang, Chiheng & Zhang, Hongbo & Yao, Congcong & Mu, Dengrui & Lyu, Fengguang & Zhang, Yu & Zhang, Shuqi, 2024. "IWRAM: A hybrid model for irrigation water demand forecasting to quantify the impacts of climate change," Agricultural Water Management, Elsevier, vol. 291(C).
    12. Shanshan Guo & Fan Zhang & Chenglong Zhang & Chunjiang An & Sufen Wang & Ping Guo, 2018. "A Multi-Objective Hierarchical Model for Irrigation Scheduling in the Complex Canal System," Sustainability, MDPI, vol. 11(1), pages 1-15, December.
    13. Zhang, W.J. & Tan, Q. & Zhang, T.Y., 2021. "A risk-averse stochastic quadratic model with recourse for supporting irrigation water management in uncertain and nonlinear environments," Agricultural Water Management, Elsevier, vol. 244(C).
    14. Shiang-Jen Wu & Jie-Sen Mai & Yi-Hong Lin & Keh-Chia Yeh, 2022. "Modeling Probabilistic-Based Reliability Analysis for Irrigation Water Supply Due to Uncertainties in Hydrological and Irrigation Factors," Sustainability, MDPI, vol. 14(19), pages 1-25, October.
    15. Yuan Huang & Feifei Zheng & Huan-Feng Duan & Qingzhou Zhang, 2020. "Multi-Objective Optimal Design of Water Distribution Networks Accounting for Transient Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1517-1534, March.
    16. Li, Mo & Guo, Ping & Singh, Vijay P., 2016. "An efficient irrigation water allocation model under uncertainty," Agricultural Systems, Elsevier, vol. 144(C), pages 46-57.
    17. Guo, Daxin & Olesen, Jørgen Eivind & Manevski, Kiril & Ma, Xiaoyi, 2021. "Optimizing irrigation schedule in a large agricultural region under different hydrologic scenarios," Agricultural Water Management, Elsevier, vol. 245(C).
    18. Li, Mo & Sun, Hao & Liu, Dong & Singh, Vijay P. & Fu, Qiang, 2021. "Multi-scale modeling for irrigation water and cropland resources allocation considering uncertainties in water supply and demand," Agricultural Water Management, Elsevier, vol. 246(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Shiang-Jen & Yang, Han-Yuan & Chang, Che-Hao & Hsu, Chih-Tsung, 2023. "Modeling GA-derived optimization analysis for canal-based irrigation water allocation under variations in runoff-related and irrigation-related factors," Agricultural Water Management, Elsevier, vol. 290(C).
    2. Zhang, Shuo & Kang, Yan & Gao, Xuan & Chen, Peiru & Cheng, Xiao & Song, Songbai & Li, Lingjie, 2023. "Optimal reservoir operation and risk analysis of agriculture water supply considering encounter uncertainty of precipitation in irrigation area and runoff from upstream," Agricultural Water Management, Elsevier, vol. 277(C).
    3. Murat Kilic & Emrah Özçakal, 2024. "Optimization of Irrigation Programming for Different Water Allocation Strategies at Network Level: Method and Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 5991-6005, December.
    4. Guo, Daxin & Olesen, Jørgen Eivind & Manevski, Kiril & Ma, Xiaoyi, 2021. "Optimizing irrigation schedule in a large agricultural region under different hydrologic scenarios," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Tsai, Wen-Ping & Cheng, Chung-Lien & Uen, Tinn-Shuan & Zhou, Yanlai & Chang, Fi-John, 2019. "Drought mitigation under urbanization through an intelligent water allocation system," Agricultural Water Management, Elsevier, vol. 213(C), pages 87-96.
    6. Chen, Mengting & Linker, Raphael & Wu, Conglin & Xie, Hua & Cui, Yuanlai & Luo, Yufeng & Lv, Xinwei & Zheng, Shizong, 2022. "Multi-objective optimization of rice irrigation modes using ACOP-Rice model and historical meteorological data," Agricultural Water Management, Elsevier, vol. 272(C).
    7. Zhu, Hongyan & Zheng, Bingyan & Nie, Weibo & Fei, Liangjun & Shan, Yuyang & Li, Ge & Liang, Fei, 2024. "Optimization of maize irrigation strategy in Xinjiang, China by AquaCrop based on a four-year study," Agricultural Water Management, Elsevier, vol. 297(C).
    8. Mandal, Uday & Dhar, Anirban & Panda, Sudhindra N., 2021. "Enhancement of sustainable agricultural production system by integrated natural resources management framework under climatic and operational uncertainty," Agricultural Water Management, Elsevier, vol. 252(C).
    9. Chongfeng Ren & Jiantao Yang & Hongbo Zhang, 2019. "An inexact fractional programming model for irrigation water resources optimal allocation under multiple uncertainties," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-17, June.
    10. Liu, Xiao & Yang, Dawen, 2021. "Irrigation schedule analysis and optimization under the different combination of P and ET0 using a spatially distributed crop model," Agricultural Water Management, Elsevier, vol. 256(C).
    11. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    12. Tang, Jiankai & Yang, Qiliang & Liang, Jiaping & Wang, Haidong & Yue, Xiulu, 2024. "Water management, planting slope indicators, and economic benefit analysis for Panax notoginseng production decision under shaded and rain-shelter cultivation: A three-year sloping fields experiment," Agricultural Water Management, Elsevier, vol. 291(C).
    13. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    14. Imran Ali Lakhiar & Haofang Yan & Chuan Zhang & Guoqing Wang & Bin He & Beibei Hao & Yujing Han & Biyu Wang & Rongxuan Bao & Tabinda Naz Syed & Junaid Nawaz Chauhdary & Md. Rakibuzzaman, 2024. "A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints," Agriculture, MDPI, vol. 14(7), pages 1-40, July.
    15. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    16. Seyedeh Hadis Moghadam & Parisa-Sadat Ashofteh & Hugo A. Loáiciga, 2022. "Optimal Water Allocation of Surface and Ground Water Resources Under Climate Change with WEAP and IWOA Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3181-3205, July.
    17. Liuyue He & Sufen Wang & Congcong Peng & Qian Tan, 2018. "Optimization of Water Consumption Distribution Based on Crop Suitability in the Middle Reaches of Heihe River," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    18. El Ansari, Loubna & Chenoune, Roza & Yigezu, Yigezu A. & Komarek, Adam M. & Gary, Christian & Belhouchette, Hatem, 2023. "Intensification options in cereal-legume production systems generate trade-offs between sustainability pillars for farm households in northern Morocco," Agricultural Systems, Elsevier, vol. 212(C).
    19. Xike Guan & Zengchuan Dong & Yun Luo & Dunyu Zhong, 2021. "Multi-Objective Optimal Allocation of River Basin Water Resources under Full Probability Scenarios Considering Wet–Dry Encounters: A Case Study of Yellow River Basin," IJERPH, MDPI, vol. 18(21), pages 1-19, November.
    20. Wang, Hongbo & Li, Guohui & Huang, Weixiong & Li, Zhaoyang & Wang, Xingpeng & Gao, Yang, 2024. "Compensation of cotton yield by nitrogen fertilizer in non-mulched fields with deficit drip irrigation," Agricultural Water Management, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424002944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.