IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i4p321-d67020.html
   My bibliography  Save this article

Sustainable Optimization for Wastewater Treatment System Using PSF-HS

Author

Listed:
  • Zong Woo Geem

    (Department of Energy IT, Gachon University, Seongnam 13120, Korea)

  • Jin-Hong Kim

    (Department of Civil & Environmental Engineering, Chung-Ang University, Seoul 06974, Korea)

Abstract

The sustainability in a river with respect to water quality is critical because it is highly related with environmental pollution, economic expenditure, and public health. This study proposes a sustainability problem of wastewater treatment system for river ecosystem conservation which helps the healthy survival of the aquatic biota and human beings. This study optimizes the design of a wastewater treatment system using the parameter-setting-free harmony search algorithm, which does not require the existing tedious value-setting process for algorithm parameters. The real-scale system has three different options of wastewater treatment, such as filtration, nitrification, and diverted irrigation (fertilization), as well as two existing treatment processes (settling and biological oxidation). The objective of this system design is to minimize life cycle costs, including initial construction costs of those treatment options, while satisfying minimal dissolved oxygen requirements in the river, maximal nitrate-nitrogen concentration in groundwater, and a minimal nitrogen requirement for crop farming. Results show that the proposed technique could successfully find solutions without requiring a tedious setting process.

Suggested Citation

  • Zong Woo Geem & Jin-Hong Kim, 2016. "Sustainable Optimization for Wastewater Treatment System Using PSF-HS," Sustainability, MDPI, vol. 8(4), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:4:p:321-:d:67020
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/4/321/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/4/321/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ajit Singh & S. Ghosh & Pankaj Sharma, 2007. "Water quality management of a stretch of river Yamuna: An interactive fuzzy multi-objective approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(2), pages 515-532, February.
    2. Zhang, Zijun & Kusiak, Andrew & Zeng, Yaohui & Wei, Xiupeng, 2016. "Modeling and optimization of a wastewater pumping system with data-mining methods," Applied Energy, Elsevier, vol. 164(C), pages 303-311.
    3. Zeng, Yaohui & Zhang, Zijun & Kusiak, Andrew, 2015. "Predictive modeling and optimization of a multi-zone HVAC system with data mining and firefly algorithms," Energy, Elsevier, vol. 86(C), pages 393-402.
    4. Ali Haghighi & Amin Bakhshipour, 2012. "Optimization of Sewer Networks Using an Adaptive Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3441-3456, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zong Woo Geem & Sung Yong Chung & Jin-Hong Kim, 2018. "Improved Optimization for Wastewater Treatment and Reuse System Using Computational Intelligence," Complexity, Hindawi, vol. 2018, pages 1-8, April.
    2. Ali Sadollah & Mohammad Nasir & Zong Woo Geem, 2020. "Sustainability and Optimization: From Conceptual Fundamentals to Applications," Sustainability, MDPI, vol. 12(5), pages 1-34, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zong Woo Geem & Sung Yong Chung & Jin-Hong Kim, 2018. "Improved Optimization for Wastewater Treatment and Reuse System Using Computational Intelligence," Complexity, Hindawi, vol. 2018, pages 1-8, April.
    2. Xin Liu & Yanju Zhou & Xiaohong Chen, 2018. "Mining Outlier Data in Mobile Internet-Based Large Real-Time Databases," Complexity, Hindawi, vol. 2018, pages 1-12, January.
    3. Khalid Almutairi & Salem Algarni & Talal Alqahtani & Hossein Moayedi & Amir Mosavi, 2022. "A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    4. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    5. Johnson, Hilary A. & Simon, Kevin P. & Slocum, Alexander H., 2021. "Data analytics and pump control in a wastewater treatment plant," Applied Energy, Elsevier, vol. 299(C).
    6. Bojan Srdjevic & Yvonilde Medeiros, 2008. "Fuzzy AHP Assessment of Water Management Plans," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 877-894, July.
    7. Filipe, Jorge & Bessa, Ricardo J. & Reis, Marisa & Alves, Rita & Póvoa, Pedro, 2019. "Data-driven predictive energy optimization in a wastewater pumping station," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    8. Oreste Fecarotta & Armando Carravetta & Maria Cristina Morani & Roberta Padulano, 2018. "Optimal Pump Scheduling for Urban Drainage under Variable Flow Conditions," Resources, MDPI, vol. 7(4), pages 1-20, November.
    9. Panagiotis Karadimos & Leonidas Anthopoulos, 2023. "Machine Learning-Based Energy Consumption Estimation of Wastewater Treatment Plants in Greece," Energies, MDPI, vol. 16(21), pages 1-20, November.
    10. Iman Ahmadianfar & Bijay Halder & Salim Heddam & Leonardo Goliatt & Mou Leong Tan & Zulfaqar Sa’adi & Zainab Al-Khafaji & Raad Z. Homod & Tarik A. Rashid & Zaher Mundher Yaseen, 2023. "An Enhanced Multioperator Runge–Kutta Algorithm for Optimizing Complex Water Engineering Problems," Sustainability, MDPI, vol. 15(3), pages 1-28, January.
    11. Xiaoli Feng & Baoyun Qiu & Yongxing Wang, 2020. "Optimizing Parallel Pumping Station Operations in an Open-Channel Water Transfer System Using an Efficient Hybrid Algorithm," Energies, MDPI, vol. 13(18), pages 1-19, September.
    12. Ping-Feng Pai & Fong-Chuan Lee, 2010. "A Rough Set Based Model in Water Quality Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2405-2418, September.
    13. Afroz, Zakia & Urmee, Tania & Shafiullah, G.M. & Higgins, Gary, 2018. "Real-time prediction model for indoor temperature in a commercial building," Applied Energy, Elsevier, vol. 231(C), pages 29-53.
    14. Torregrossa, Dario & Hansen, Joachim & Hernández-Sancho, Francesc & Cornelissen, Alex & Schutz, Georges & Leopold, Ulrich, 2017. "A data-driven methodology to support pump performance analysis and energy efficiency optimization in Waste Water Treatment Plants," Applied Energy, Elsevier, vol. 208(C), pages 1430-1440.
    15. E. Hernandez & Venkatesh Uddameri, 2010. "Selecting Agricultural Best Management Practices for Water Conservation and Quality Improvements Using Atanassov’s Intuitionistic Fuzzy Sets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4589-4612, December.
    16. Praveen K. Navin & Yogesh P. Mathur, 2016. "Layout and Component Size Optimization of Sewer Network Using Spanning Tree and Modified PSO Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3627-3643, August.
    17. Figueroa–García, Juan Carlos & Hernández, Germán & Franco, Carlos, 2022. "A review on history, trends and perspectives of fuzzy linear programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    18. Cui, Can & Xue, Jing, 2024. "Energy and comfort aware operation of multi-zone HVAC system through preference-inspired deep reinforcement learning," Energy, Elsevier, vol. 292(C).
    19. Vo, Nguyen Dat & Oh, Dong Hoon & Kang, Jun-Ho & Oh, Min & Lee, Chang-Ha, 2020. "Dynamic-model-based artificial neural network for H2 recovery and CO2 capture from hydrogen tail gas," Applied Energy, Elsevier, vol. 273(C).
    20. Serafín Alonso & Antonio Morán & Miguel Ángel Prada & Perfecto Reguera & Juan José Fuertes & Manuel Domínguez, 2019. "A Data-Driven Approach for Enhancing the Efficiency in Chiller Plants: A Hospital Case Study," Energies, MDPI, vol. 12(5), pages 1-28, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:4:p:321-:d:67020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.